Patents by Inventor Yih Lee

Yih Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240071504
    Abstract: A memory device is provided, including a memory array, a driver circuit, and recover circuit. The memory array includes multiple memory cells. Each memory cell is coupled to a control line, a data line, and a source line and, during a normal operation, is configured to receive first and second voltage signals. The driver circuit is configured to output at least one of the first voltage signal or the second voltage signal to the memory cells. The recover circuit is configured to output, during a recover operation, a third voltage signal, through the driver circuit to at least one of the memory cells. The third voltage signal is configured to have a first voltage level that is higher than a highest level of the first voltage signal or the second voltage signal, or lower than a lowest level of the first voltage signal or the second voltage signal.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Chun LIAO, Yu-Kai CHANG, Yi-Ching LIU, Yu-Ming LIN, Yih WANG, Chieh LEE
  • Patent number: 11304626
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 19, 2022
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Patent number: 11013429
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: May 25, 2021
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Publication number: 20200405190
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Application
    Filed: July 10, 2020
    Publication date: December 31, 2020
    Inventors: WEN-YEN LIN, MING-YIH LEE, PO-CHENG CHANG, WEN-ZHENG ZHOU
  • Patent number: 10799151
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 13, 2020
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Publication number: 20190192050
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Inventors: WEN-YEN LIN, MING-YIH LEE, PO-CHENG CHANG, WEN-ZHENG ZHOU
  • Publication number: 20190125217
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 2, 2019
    Inventors: WEN-YEN LIN, MING-YIH LEE, PO-CHENG CHANG, WEN-ZHENG ZHOU
  • Patent number: 10238319
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG. The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: March 26, 2019
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Patent number: 9973537
    Abstract: A method for updating security information is applied to a system including an information service provider and mobile devices. The information service provider includes a server and a database, in which the server provides security information to the mobile devices and each of the security information is related individually to a security code. The information service provider can transmit updated security information to the mobile devices in an active-push manner in communicative off-peak hours, and at the same time each of the mobile devices would be automatically waken up and connected with the service-provider so as to receive the updated security information. While the mobile device is to request additional information, the passive-pull transmission manner can then be applied by the mobile device to obtain the additional information from the information service provider. Thus, merits of both the active push transmission and the passive pull transmission can be obtained.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: May 15, 2018
    Assignee: Fonestock Technology Inc.
    Inventors: Albert Chu Tsung Chen, Jun Yih Lee, Pi Ping Wei
  • Publication number: 20180014753
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG. The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: WEN-YEN LIN, MING-YIH LEE, PO-CHENG CHANG, WEN-ZHENG ZHOU
  • Patent number: 9833172
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG. The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: December 5, 2017
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Patent number: 9780979
    Abstract: A analog equalizer includes: an adjusting circuit, generating an adjustment signal and a selection signal; a cascaded equalization circuit, receiving the adjustment signal, and adjusting at least one of a tunable resistor, a tunable capacitor and a tunable current source in the multi-stage equalization circuit according to the adjustment signal to perform an equalization process on a signal to be equalized; and an analog multiplexer, coupled to the cascaded equalization circuit and the adjusting circuit, selecting and outputting an equalized signal outputted from one stage of the multi-stage equalization circuit according to the selection signal. Wherein, the adjusting circuit adjusts the adjustment signal and the selection signal according to the equalized signal outputted from the analog multiplexer and a target equalization value.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: October 3, 2017
    Assignee: MSTAR SEMICONDUCTOR, INC.
    Inventors: Kai Sun, Jiunn-Yih Lee, Wen-Cai Lu
  • Publication number: 20170222848
    Abstract: A analog equalizer includes: an adjusting circuit, generating an adjustment signal and a selection signal; a cascaded equalization circuit, receiving the adjustment signal, and adjusting at least one of a tunable resistor, a tunable capacitor and a tunable current source in the multi-stage equalization circuit according to the adjustment signal to perform an equalization process on a signal to be equalized; and an analog multiplexer, coupled to the cascaded equalization circuit and the adjusting circuit, selecting and outputting an equalized signal outputted from one stage of the multi-stage equalization circuit according to the selection signal. Wherein, the adjusting circuit adjusts the adjustment signal and the selection signal according to the equalized signal outputted from the analog multiplexer and a target equalization value.
    Type: Application
    Filed: January 23, 2017
    Publication date: August 3, 2017
    Inventors: Kai Sun, Jiunn-Yih Lee, Wen-Cai Lu
  • Patent number: 9685962
    Abstract: A clock data recovery apparatus includes an oscillator, a phase detector and an oscillator control circuit. The oscillator generates an original clock signal. The phase detector includes a first sampling circuit, a frequency dividing circuit, a second sampling circuit and a selecting circuit. The first sampling circuit samples a data signal using the original clock signal to generate a first set of sample results. The frequency dividing circuit divides the original clock signal to generate a frequency divided clock signal. The second sampling circuit performs sampling using the frequency divided clock signal to generate a second set of sample results. The selecting circuit selectively outputs one of the first and second sets of sample results as a final set of sample results. The oscillator control circuit controls the oscillator according to the final set of sample results.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 20, 2017
    Assignee: MSTAR SEMICONDUCTOR, INC.
    Inventors: Meng-Tse Weng, Chun-Wen Yeh, Jiunn-Yih Lee
  • Publication number: 20170156338
    Abstract: Provided is a composite powder used for the visible light catalytic and anti-bacterial purposes. The composite powder includes a plurality of N-type semiconductor particles and a plurality of P-type semiconductor nano-particles. The P-type semiconductor nano-particles cover surfaces of the N-type semiconductor particles respectively. A weight ratio of the N-type semiconductor particles and the P-type semiconductor nano-particles is in a range of 1:0.1 to 1:0.5. A PN junction is provided between each of the N-type semiconductor particles and the corresponding P-type semiconductor nano-particles.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 8, 2017
    Inventors: Dong-Hau Kuo, Fu-An Yu, Yen-Rong Kuo, Yi-Yuan Yang, Jiunn-Yih Lee, Kuo-Pin Cheng, Chang-Mou Wu, Meng-Wei Ma, Kuan-Ting Chuang
  • Patent number: 9673795
    Abstract: An integrated circuit includes a data sampler and a digital logic circuit. The data sampler provides multiple signal samples at a speed twice a symbol rate according to a local clock signal and the inverted local clock signal. The signal samples include a first symbol sample, and a second symbol sample that occurs later than the first symbol sample. The signal samples further include an interpolated sample between the first and second symbol samples. The digital logic circuit compares the first symbol sample with the interpolated sample to generate pre phase correction data, and compares the second symbol sample with the interpolated sample to generate post phase correction data. The pre phase correction data is generated earlier than the post phase correction data. The local clock signal and the inverted local clock signal have substantially a phase difference of 180 degrees.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: June 6, 2017
    Assignee: MStar Semiconductor, Inc.
    Inventors: Meng-Tse Weng, Jiunn-Yih Lee
  • Publication number: 20170070218
    Abstract: An integrated circuit includes a data sampler and a digital logic circuit. The data sampler provides multiple signal samples at a speed twice a symbol rate according to a local clock signal and the inverted local clock signal. The signal samples include a first symbol sample, and a second symbol sample that occurs later than the first symbol sample. The signal samples further include an interpolated sample between the first and second symbol samples. The digital logic circuit compares the first symbol sample with the interpolated sample to generate pre phase correction data, and compares the second symbol sample with the interpolated sample to generate post phase correction data. The pre phase correction data is generated earlier than the post phase correction data. The local clock signal and the inverted local clock signal have substantially a phase difference of 180 degrees.
    Type: Application
    Filed: February 8, 2016
    Publication date: March 9, 2017
    Inventors: Meng-Tse WENG, Jiunn-Yih LEE
  • Publication number: 20170070230
    Abstract: A clock data recovery apparatus includes an oscillator, a phase detector and an oscillator control circuit. The oscillator generates an original clock signal. The phase detector includes a first sampling circuit, a frequency dividing circuit, a second sampling circuit and a selecting circuit. The first sampling circuit samples a data signal using the original clock signal to generate a first set of sample results. The frequency dividing circuit divides the original clock signal to generate a frequency divided clock signal. The second sampling circuit performs sampling using the frequency divided clock signal to generate a second set of sample results. The selecting circuit selectively outputs one of the first and second sets of sample results as a final set of sample results. The oscillator control circuit controls the oscillator according to the final set of sample results.
    Type: Application
    Filed: July 12, 2016
    Publication date: March 9, 2017
    Inventors: Meng-Tse Weng, Chun-Wen Yeh, Jiunn-Yih Lee
  • Patent number: 9514732
    Abstract: A sound-absorbing material has a membrane having multiple piezoelectric fibers, the fiber density of the membrane is below 50 g/m2, the thickness of the membrane is below 1 mm, sound-absorbing coefficient of the membrane is larger than 0.1 at absorbing frequency at 100 Hz+/?10%, and the sound-absorbing coefficient of the membrane is over 0.05 at absorbing frequency at 800 Hz to 1000 Hz. PVDF electrospinning nanofiber membranes of the present invention are thinner and more flexible compared to conventional sound-absorbing material, the membranes in the present invention performs excellent low frequency sound absorption with very thin membrane.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: December 6, 2016
    Assignee: National Taiwan University of Science and Technology
    Inventors: Chang-Mou Wu, Min-Hui Chou, Jiunn-Yih Lee
  • Publication number: 20160277404
    Abstract: A method for updating security information is applied to a system including an information service provider and mobile devices. The information service provider includes a server and a database, in which the server provides security information to the mobile devices and each of the security information is related individually to a security code. The information service provider can transmit updated security information to the mobile devices in an active-push manner in communicative off-peak hours, and at the same time each of the mobile devices would be automatically waken up and connected with the service-provider so as to receive the updated security information. While the mobile device is to request additional information, the passive-pull transmission manner can then be applied by the mobile device to obtain the additional information from the information service provider. Thus, merits of both the active push transmission and the passive pull transmission can be obtained.
    Type: Application
    Filed: November 25, 2015
    Publication date: September 22, 2016
    Applicant: Fonestock Technology Inc.
    Inventors: Albert Chu Tsung Chen, Jun Yih Lee, Pi Ping Wei