Patents by Inventor Yoshiaki Kito

Yoshiaki Kito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200270087
    Abstract: A processing system and a device manufacturing method that can perform manufacturing of an electronic device without stopping the entire manufacturing system, even when the processing state actually implemented on a sheet substrate by a processing device differs from the target processing state.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Applicant: NIKON CORPORATION
    Inventors: Yoshiaki KITO, Masaki KATO, Kei NARA, Masakazu HORI
  • Patent number: 10753462
    Abstract: A vehicle transmission control apparatus including a manual shift instructing portion outputting a manual shift instruction for upshifting or downshifting a transmission, and an electric control unit including a microprocessor and a memory to control a shift operation. The microprocessor controls the shift operation in accordance with a first shift chart stored in the memory based on vehicle information before the manual shift instruction is output, controls the shift operation in accordance with the manual shift instruction when the manual shift instruction is output, and controls the shift operation in accordance with a second shift chart stored in the memory based on the vehicle information when a predetermined mode switch condition is established after the manual shift instruction is output.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: August 25, 2020
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takayuki Kishi, Yoshiaki Konishi, Akira Kito, Toshiyuki Mizuno
  • Publication number: 20200243560
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Applicant: TOSHIBA MEMORY CORPORATION
    Inventors: Yoshiaki FUKUZUMI, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: 10683185
    Abstract: A processing system and a device manufacturing method that can perform manufacturing of an electronic device without stopping the entire manufacturing system, even when the processing state actually implemented on a sheet substrate by a processing device differs from the target processing state.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 16, 2020
    Assignee: NIKON CORPORATION
    Inventors: Yoshiaki Kito, Masaki Kato, Kei Nara, Masakazu Hori
  • Patent number: 10658383
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: May 19, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: 10654487
    Abstract: A travel control apparatus including a driving level switching portion switching to a first driving automation level involving a driver responsibility to monitor surroundings or a second driving automation level not involving the driver responsibility to monitor the surroundings, a distance measurement device measuring an inter-vehicle distance to a forward vehicle, and a microprocessor. The microprocessor performs controlling an equipment according to the inter-vehicle distance so as to follow the forward vehicle, controlling the equipment so that the self-driving vehicle starts when the inter-vehicle distance increases up to a predetermined value, and determining a first predetermined value as the predetermined value when the driving automation level is switched to the first driving automation level and a second predetermined value larger than the first predetermined value as the predetermined value when the driving automation level is switched to the second driving automation level.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 19, 2020
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takayuki Kishi, Toshiyuki Mizuno, Akira Kito, Yoshiaki Konishi
  • Publication number: 20200119037
    Abstract: A non-volatile semiconductor storage device has a plurality of memory strings to each of which a plurality of electrically rewritable memory cells are connected in series. Each of the memory strings includes first semiconductor layers each having a pair of columnar portions extending in a vertical direction with respect to a substrate and a coupling portion formed to couple the lower ends of the pair of columnar portions; a charge storage layer formed to surround the side surfaces of the columnar portions; and first conductive layers formed to surround the side surfaces of the columnar portions and the charge storage layer. The first conductive layers function as gate electrodes of the memory cells.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Applicant: TOSHIBA MEMORY CORPORATION
    Inventors: YOSHIAKI FUKUZUMI, Ryota KATSUMATA, Masaru KIDOH, Masaru KITO, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Hideaki AOCHI
  • Patent number: 10501078
    Abstract: A vehicle control apparatus including a surrounding circumstances detector detecting surrounding circumstances of a self-driving vehicle and an electric control unit including a microprocessor configured to perform generating an action plan of the self-driving vehicle based on the surrounding circumstances and controlling the engine and the transmission so that the self-driving vehicle travels by self-driving in accordance with the action plan. The generating includes generating a first action plan and a second action plan, the first action plan including target position data of the self-driving vehicle, the second action plan including an acceleration instruction to a target vehicle speed not including the target position data, and the controlling includes controlling the engine and the transmission, so that the self-driving vehicle accelerates to the target vehicle speed at a target torque minimizing a fuel consumption quantity per unit travel distance when the second action plan is generated.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: December 10, 2019
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takayuki Kishi, Yoshiaki Konishi, Toshiyuki Mizuno, Akira Kito
  • Publication number: 20190348437
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Applicant: Toshiba Memory Corporation
    Inventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KITO, Masaru KIDOH, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Junya MATSUNAMI, Tomoko FUJIWARA, Hideaki AOCHI, Ryouhei KIRISAWA, Yoshimasa MIKAJIRI, Shigeto OOTA
  • Patent number: 10440302
    Abstract: An imaging device having a pixel including a photoelectric converter that converts incident light into charges, and a reset transistor having a first source, a first drain and a first gate, one of the first source and the first drain coupled to the photoelectric converter. The imaging device further including first voltage generating circuity that generates a first voltage; second voltage generating circuity that generates a second voltage, the second voltage generating circuity being different from the first voltage generating circuity; and first switching circuity that causes either the first voltage generating circuity or the second voltage generating circuity to selectively couple to the other of the first source and the first drain of the reset transistor.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 8, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masaaki Yanagida, Takayasu Kito, Yoshiaki Satou
  • Patent number: 10418378
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: September 17, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Publication number: 20190250629
    Abstract: A vehicle travel control apparatus configured to control a vehicle with a self-driving capability, including a travel state detector configured to detect a traveling state of a forward vehicle in front of the vehicle, and an electric control unit having a microprocessor and a memory. The microprocessor is configured to perform recognizing a drive-mode of the forward vehicle based on the traveling state detected by the travel state detector. The recognizing includes calculating a degree of variance of a vehicle speed or an acceleration of the forward vehicle based on the traveling state detected by the travel state detector, and determining whether the forward vehicle is traveling in a manual drive mode or a self-drive mode based on the degree of variance calculated in the calculating.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 15, 2019
    Inventors: Toshiyuki Mizuno, Akira Kito, Yoshiaki Konishi, Takayuki Kishi
  • Publication number: 20190248369
    Abstract: A vehicle travel control apparatus configured to control an actuator for driving a vehicle with a self-driving capability so that the vehicle follows a forward vehicle in front of the vehicle, and including an electric control unit having a microprocessor and a memory. The microprocessor is configured to perform: recognizing a travel pattern of the forward vehicle; setting a travel mode with an acceleration performance in accordance with the travel pattern recognized in the recognizing; and controlling the actuator so that the vehicle follows the forward vehicle in the travel mode set in the setting.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 15, 2019
    Inventors: Toshiyuki Mizuno, Akira Kito, Yoshiaki Konishi, Takayuki Kishi
  • Publication number: 20190248366
    Abstract: A vehicle travel control apparatus configured to control an actuator for driving a vehicle with a self-driving capability so that the vehicle follows a forward vehicle in front of the vehicle. The vehicle travel control apparatus includes a travel state detector configured to detect a traveling state of the forward vehicle, and an electric control unit having a microprocessor and a memory. The microprocessor is configured to perform determining whether the forward vehicle is cruising based on the traveling condition detected by the travel state detector, and controlling the actuator so that the vehicle travels in a normal mode, when it is determined that the forward vehicle is not cruising, and the vehicle follows the forward vehicle in a cruise mode with a fuel economy performance or quietness higher than in the normal mode, when the forward vehicle is cruising.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 15, 2019
    Inventors: Toshiyuki Mizuno, Takayuki Kishi, Akira Kito, Yoshiaki Konishi
  • Publication number: 20190220007
    Abstract: A vehicle travel control apparatus including a drive mode instruction switch instructing a manual drive mode or a self-drive mode and a processor configured to perform determining whether a deviation between a vehicle speed detected by a vehicle speed detector and a target vehicle speed included in an action plan is equal to or less than a predetermined value, and controlling an actuator in the self-drive mode in accordance with the action plan. The microprocessor is further configured to perform switching to the self-drive mode when switching to the self-drive mode is instructed during an acceleration running in the manual drive mode, and controlling the actuator so as to maintain an acceleration in the manual drive mode at least until it is determined that the deviation is equal to or less than the predetermined value.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 18, 2019
    Inventors: Yoshiaki Konishi, Takayuki Kishi, Akira Kito, Toshiyuki Mizuno
  • Publication number: 20190220008
    Abstract: A vehicle travel control apparatus including a road surface condition detector, a drive mode instruction switch instructing a manual drive mode or a self-drive mode and, an electric control unit having a microprocessor and a memory. The memory stores a driving characteristic of a driver during traveling in the self-drive mode, and the microprocessor performs generating an action plan including a target path of the vehicle, controlling an actuator so that the vehicle travels in self-driving in accordance with the action plan, and the generating including restricting a target value of a physical quantity for traveling of the vehicle included in the action plan, based on the detected road surface condition and the driving characteristic stored in the memory, when a switching from the manual drive mode to the self-drive mode is instructed by the drive mode instruction switch.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 18, 2019
    Inventors: Toshiyuki Mizuno, Akira Kito, Yoshiaki Konishi, Takayuki Kishi
  • Publication number: 20190217859
    Abstract: A vehicle control apparatus including a microprocessor configured to perform generating an action plan; setting a target speed ratio of the transmission corresponding to a required driving force required after completion of a turn traveling based on the action plan; determining whether a current speed ratio during deceleration traveling or after the deceleration traveling before the vehicle starts the turn traveling is greater or smaller than the target speed ratio; controlling the transmission in accordance with a result determined by the determining, and the controlling including controlling the transmission so as to decrease a speed ratio to the target speed ratio before the vehicle starts the turn traveling, when it is determined that the current speed ratio is greater than the target speed ratio.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 18, 2019
    Inventors: Yoshiaki Konishi, Akira Kito, Toshiyuki Mizuno, Takayuki Kishi
  • Publication number: 20190202457
    Abstract: A travel control apparatus of a self-driving vehicle including an electric control unit having a microprocessor and a memory, wherein the microprocessor is configured to function as: a proximity degree calculation unit configured to calculate a degree of proximity of a rearward vehicle at a rear of the self-driving vehicle to the self-driving vehicle; a proximity degree determination unit configured to determine whether the degree of proximity calculated by the proximity degree calculation unit is equal to or greater than a predetermined degree; and an actuator control unit configured to control the actuator so as to increase a maximum vehicle speed when it is determined by the proximity degree determination unit that the degree of proximity is equal to or greater than the predetermined degree than when it is determined that the degree of proximity is less than the predetermined degree.
    Type: Application
    Filed: December 11, 2018
    Publication date: July 4, 2019
    Inventors: Akira Kito, Yoshiaki Konishi, Takayuki Kishi, Toshiyuki Mizuno
  • Publication number: 20190202458
    Abstract: A travel control apparatus of a self-driving vehicle including an electric control unit having a microprocessor and a memory, wherein the microprocessor is configured to function as: a proximity degree calculation unit configured to calculate a degree of proximity of a rearward vehicle at a rear of the self-driving vehicle to the self-driving vehicle; a proximity degree determination unit configured to determine whether the degree of proximity calculated by the proximity degree calculation unit is equal to or greater than a predetermined degree; and an actuator control unit configured to control the actuator so as to increase a vehicle acceleration when it is determined by the proximity degree determination unit that the degree of proximity is equal to or greater than the predetermined degree than when it is determined that the degree of proximity is less than the predetermined degree.
    Type: Application
    Filed: December 11, 2018
    Publication date: July 4, 2019
    Inventors: Yoshiaki Konishi, Takayuki Kishi, Akira Kito, Toshiyuki Mizuno
  • Patent number: RE48191
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: September 1, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Ryota Katsumata, Hideaki Aochi, Hiroyasu Tanaka, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota