Patents by Inventor Yoshifumi Okitsu

Yoshifumi Okitsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10365628
    Abstract: A positioning control device of an actuator provided with a strain wave gearing has a full-closed control system for feeding back a position of a load shaft, and driving and controlling a motor so as to position the load shaft at a target position. The full-closed control system has an H? compensator designed so that, when a generalized plant having angular transmission error in the strain wave gearing as a disturbance input is assumed, an H? norm of a transfer function from the disturbance input of the generalized plant to an evaluation output is a predetermined value or less. Mechanical vibration during positioning response caused by angular transmission error in the strain wave gearing can be reliably suppressed.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: July 30, 2019
    Assignees: Harmonic Drive Systems Inc., Nagoya Institute of Technology
    Inventors: Masafumi Yamamoto, Yoshifumi Okitsu, Makoto Iwasaki
  • Patent number: 10254740
    Abstract: A positioning control system is provided with a state-feedback control system with a state observer as a full-closed control system for driving and controlling a motor so that a load shaft, which is an output shaft of a strain wave gearing, is positioned at a target position on the basis of a load shaft position actually detected. The state observer estimates a motor shaft position and a motor velocity based on a control input for the motor and the load shaft position. The state-feedback control system feeds back the state quantity of the object of control using the load shaft position as well as estimated motor shaft position and estimated motor velocity obtained by the state observer. It is possible to suppress resonant vibration caused by angular transmission error in the strain wave gearing and perform highly accurate positioning.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: April 9, 2019
    Assignees: Harmonic Drive Systems Inc., Nagoya Institute of Technology
    Inventors: Masafumi Yamamoto, Yoshifumi Okitsu, Makoto Iwasaki
  • Publication number: 20180246489
    Abstract: A positioning control system is provided with a state-feedback control system with a state observer as a full-closed control system for driving and controlling a motor so that a load shaft, which is an output shaft of a strain wave gearing, is positioned at a target position on the basis of a load shaft position actually detected. The state observer estimates a motor shaft position and a motor velocity based on a control input for the motor and the load shaft position. The state-feedback control system feeds back the state quantity of the object of control using the load shaft position as well as estimated motor shaft position and estimated motor velocity obtained by the state observer. It is possible to suppress resonant vibration caused by angular transmission error in the strain wave gearing and perform highly accurate positioning.
    Type: Application
    Filed: September 27, 2016
    Publication date: August 30, 2018
    Applicants: HARMONIC DRIVE SYSTEMS INC., NAGOYA INSTITUTE OF TECHNOLOGY
    Inventors: Masafumi YAMAMOTO, Yoshifumi OKITSU, Makoto IWASAKI
  • Publication number: 20180239327
    Abstract: A positioning control device of an actuator provided with a strain wave gearing has a full-closed control system for feeding back a position of a load shaft, and driving and controlling a motor so as to position the load shaft at a target position. The full-closed control system has an H? compensator designed so that, when a generalized plant having angular transmission error in the strain wave gearing as a disturbance input is assumed, an H? norm of a transfer function from the disturbance input of the generalized plant to an evaluation output is a predetermined value or less. Mechanical vibration during positioning response caused by angular transmission error in the strain wave gearing can be reliably suppressed.
    Type: Application
    Filed: September 27, 2016
    Publication date: August 23, 2018
    Applicants: HARMONIC DRIVE SYSTEMS INC., NAGOYA INSTITUTE OF TECHNOLOGY
    Inventors: Masafumi YAMAMOTO, Yoshifumi OKITSU, Makoto IWASAKI
  • Patent number: 9075399
    Abstract: A positioning control system for an actuator provided with a strain wave gearing is provided with: a semi-closed feedback controller FB(s) that controls a load shaft position ?1 on the basis of a feedback motor shaft position ?m; and a feedforward linearization compensator configured by incorporating a nonlinear plant model for an object to be controlled into a feedback linearization compensator using an exact linearization technique. The feedforward linearization compensator uses a forward-calculated state quantity estimated value x* to calculate a feedforward current instruction i*ref and a feedforward motor position instruction ?*m to be input into the feedback controller FB(s). A positioning error caused by a non-linear element (non-linear spring property, relative rotational synchronization component, and non-linear friction) of the strain wave gearing is compensated for by the feedforward linearization compensator.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: July 7, 2015
    Assignees: HARMONIC DRIVE SYSTEMS INC., NATIONAL UNIVERSITY CORPORATION NAGOYA INSTITUTE OF TECHNOLOGY
    Inventors: Masafumi Yamamoto, Yoshifumi Okitsu, Makoto Iwasaki
  • Patent number: 9008843
    Abstract: In a positioning apparatus for an actuator, a sliding mode controller for compensating for nonlinear characteristics of a wave gear device of the actuator generates a control input u to a controlled object, based on a position command ?l* and a state variable x for expressing the controlled object. The controlled object is defined in the following formula. {dot over (x)}=Ax+Bu+E?l* y=Cx The switching surfaces of the sliding mode control system are defined by a variable S expressed in the following formula. S=BTP The control input u is the sum of the linear-state feedback control term ul and the nonlinear control input unl u = u l + u nl = - ( SB ) - 1 ? ( SAx + SE ? ? ? l * ) - k ? ( SB ) - 1 ? ? ? ? ? ? = Sx , where ? is the switching function, and k is the switching gain.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: April 14, 2015
    Assignees: Harmonic Drive Systems Inc., National University Corporation Nagoya Institute of Technology
    Inventors: Yoshifumi Okitsu, Masafumi Yamamoto, Yuki Kato, Makoto Iwasaki
  • Publication number: 20140203752
    Abstract: A positioning control system for an actuator provided with a strain wave gearing is provided with: a semi-closed feedback controller FB(s) that controls a load shaft position ?l on the basis of a feedback motor shaft position ?m; and a feedforward linearization compensator configured by incorporating a nonlinear plant model for an object to be controlled into a feedback linearization compensator using an exact linearization technique. The feedforward linearization compensator uses a forward-calculated state quantity estimated value x* to calculate a feedforward current instruction i*ref and a feedforward motor position instruction ?*m to be input into the feedback controller FB(s). A positioning error caused by a non-linear element (non-linear spring property, relative rotational synchronization component, and non-linear friction) of the strain wave gearing is compensated for by the feedforward linearization compensator.
    Type: Application
    Filed: October 24, 2011
    Publication date: July 24, 2014
    Applicants: National University Corporation Nagoya Institute of Technology, Harmonic Drive Systems Inc.
    Inventors: Masafumi Yamamoto, Yoshifumi Okitsu, Makoto Iwasaki
  • Patent number: 8442692
    Abstract: According to a method for performing adaptive friction compensation of an actuator including a wave gear drive, there is used as a friction compensation current applied to a motor drive current a static friction compensation current is when a motor shaft stops with a deviation, and a Coulomb friction compensation current ic in other circumstances. The static friction compensation current is is obtained by adding a compensation amount isr of a monotonically increasing ramp function to a compensation amount iss of a step function, and a step-function compensation amount ics is used as the Coulomb friction compensation current ic. Since the amount of friction compensation can be changed adaptively based on the data during positioning-control response, a motor shaft can be stabilized at a target angle without prominent accompanying vibration, even if the ambient temperature changes and the friction characteristics of the wave gear drive fluctuate.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 14, 2013
    Assignees: Harmonic Drive Systems, Inc., National University Corporation Nagoya Institute of Technology
    Inventors: Yoshifumi Okitsu, Yuki Kato, Kozo Sasaki, Makoto Iwasaki
  • Patent number: 8427094
    Abstract: A method for controlling positioning of an actuator having a wave gear device uses an exact linearization technique to compensate effects relative to positioning control of a load shaft caused by the non-linear spring characteristics of the wave gear device. A plant model is constructed from the actuator, and linearized using the exact linearization technique; measurements are taken of non-linear elastic deformation of the wave gear device relative to load torque; the non-linear spring model ?g(?tw) is defined using a cubic polynomial with the constant defined as zero to allow the measurement results to be recreated; and the current input into the model and motor position of the model when a load acceleration command is a command value are entered into a processor arranged as a semi-closed loop control system for controlling positioning of the load shaft, as a feed-forward current command and a feed-forward motor position command.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 23, 2013
    Assignees: Harmonic Drive Systems, Inc., National University Corporation Nagoya Institute of Technology
    Inventors: Yoshifumi Okitsu, Yuki Kato, Kozo Sasaki, Makoto Iwasaki
  • Publication number: 20120271459
    Abstract: In a positioning apparatus for an actuator, a sliding mode controller for compensating for nonlinear characteristics of a wave gear device of the actuator generates a control input u to a controlled object, based on a position command ?1* and a state variable x for expressing the controlled object. The controlled object is defined in the following formula. {dot over (x)}=Ax+Bu+E?l* y=Cx The switching surfaces of the sliding mode control system are defined by a variable S expressed in the following formula. S=BTP The control input u is the sum of the linear-state feedback control term ul and the nonlinear control input unl u = u l + u nl = - ( SB ) - 1 ? ( SAx + SE ? ? ? l * ) - k ? ( SB ) - 1 ? ? ? ? ? ? = Sx , where ? is the switching function, and k is the switching gain.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 25, 2012
    Applicants: National University Corporation Nagoya Institute of Technology, Harmonic Drive Systems Inc.
    Inventors: Yoshifumi Okitsu, Masafumi Yamamoto, Yuki Kato, Makoto Iwasaki
  • Patent number: 8296089
    Abstract: A positioning system (1) provided with an actuator (2) having a wave gear device (4) is driven and controlled by a semi-closed loop control for controlling the load position of a load device (5) based on the motor position of a motor shaft (31) of a motor (3). In a method for compensating for an angular transmission error by compensating for a motor shaft synchronous component ?Sync that occurs in synchrony with the motor position and is a relative rotation-synchronous component that includes an angular transmission error component of the wave gear device (4), the positioning system (1) is represented as a two-inertia model, and the motor shaft synchronous component ?Sync is represented as an oscillation source for producing a twisting action between the two inertia bodies in the two-inertia model.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: October 23, 2012
    Assignees: Harmonic Drive Systems Inc., National University Corporation Nagoya Institute of Technology
    Inventors: Kozo Sasaki, Yoshifumi Okitsu, Toshio Yajima, Makoto Iwasaki
  • Publication number: 20110251722
    Abstract: According to a method for performing adaptive friction compensation of an actuator including a wave gear drive, there is used as a friction compensation current applied to a motor drive current a static friction compensation current is when a motor shaft stops with a deviation, and a Coulomb friction compensation current ic in other circumstances. The static friction compensation current is is obtained by adding a compensation amount isr of a monotonically increasing ramp function to a compensation amount iss of a step function, and a step-function compensation amount ics is used as the Coulomb friction compensation current ic. Since the amount of friction compensation can be changed adaptively based on the data during positioning-control response, a motor shaft can be stabilized at a target angle without prominent accompanying vibration, even if the ambient temperature changes and the friction characteristics of the wave gear drive fluctuate.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 13, 2011
    Applicant: Harmonic Drive Systems, Inc.
    Inventors: Yoshifumi OKITSU, Yuki KATO, Kozo SASAKI, Makoto IWASAKI
  • Publication number: 20110248661
    Abstract: A method for controlling positioning of an actuator having a wave gear device uses a strict linearization technique to compensate for the effects relative to positioning control of a load shaft in the, as caused by the non-linear spring characteristics of the wave gear device. In the method, a plant model is constructed from the actuator to be controlled, the model being linearized using a strict linearization technique; measurements are taken of the non-linear elastic deformation of the wave gear device relative to load torque; the non-linear spring model ?g(?tw) is defined using a cubic polynomial with the constant defined as zero to allow the measurement results to be recreated; and the current input into the plant model and the motor position of the plant model when a load acceleration command is a command value are entered into a semi-closed loop control system for controlling the positioning of the load shaft, as a feed-forward current command and a feed-forward motor position command.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 13, 2011
    Applicant: Harmonic Drive Systems, Inc.
    Inventors: Yoshifumi OKITSU, Yuki KATO, Kozo SASAKI, Makoto IWASAKI
  • Patent number: 8013560
    Abstract: The non-linear elastic deformation component included in the angular transmission error of an actuator provided with a wave gear drive is a component of the angular transmission error occurring due to elastic deformation of a flexible externally-toothed gear when the direction of rotation of the motor shaft changes. This component can be analyzed by driving the motor in a sine-wave shape. A model of the non-linear elastic deformation component (non-linear model) obtained from the analysis results is used to store data or a function for compensating for this component in a motor-control device. Compensation for the non-linear elastic deformation component (?Hys) is added to a motor-shaft angle command (?*M) as a compensation input (N?*TE) for feed-forward compensation. As a result, the non-linear elastic deformation component (?Hys) can be effectively reduced, and the positioning precision of the actuator can be improved.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: September 6, 2011
    Assignee: Harmonic Drive Systems Inc.
    Inventors: Kozo Sasaki, Yoshifumi Okitsu, Toshio Yajima, Makoto Iwasaki
  • Publication number: 20110054820
    Abstract: A positioning system (1) provided with an actuator (2) having a wave gear device (4) is driven and controlled by a semi-closed loop control for controlling the load position of a load device (5) based on the motor position of a motor shaft (31) of a motor (3). In a method for compensating for an angular transmission error by compensating for a motor shaft synchronous component ?Sync that occurs in synchrony with the motor position and is a relative rotation-synchronous component that includes an angular transmission error component of the wave gear device (4), the positioning system (1) is represented as a two-inertia model, and the motor shaft synchronous component ?Sync is represented as an oscillation source for producing a twisting action between the two inertia bodies in the two-inertia model.
    Type: Application
    Filed: March 8, 2010
    Publication date: March 3, 2011
    Applicants: HARMONIC DRIVE SYSTEMS ,INC., NATIONAL UNIVERSITY CORPORATION NAGOYA INSTITUTE OF TECHNOLOGY
    Inventors: Kozo Sasaki, Yoshifumi Okitsu, Toshio Yajima, Makoto Iwasaki
  • Publication number: 20090200979
    Abstract: The non-linear elastic deformation component included in the angular transmission error of an actuator provided with a wave gear drive is a component of the angular transmission error occurring due to elastic deformation of a flexible externally-toothed gear when the direction of rotation of the motor shaft changes. This component can be analyzed by driving the motor in a sine-wave shape. A model of the non-linear elastic deformation component (non-linear model) obtained from the analysis results is used to store data or a function for compensating for this component in a motor-control device. Compensation for the non-linear elastic deformation component (?Hys) is added to a motor-shaft angle command (?*M) as a compensation input (N?*TE) for feed-forward compensation. As a result, the non-linear elastic deformation component (?Hys) can be effectively reduced, and the positioning precision of the actuator can be improved.
    Type: Application
    Filed: January 13, 2009
    Publication date: August 13, 2009
    Applicant: HARMONIC DRIVE SYSTEMS INC.
    Inventors: Kozo SASAKI, Yoshifumi OKITSU, Toshio YAJIMA, Makoto IWASAKI