Patents by Inventor Yoshiki Kato

Yoshiki Kato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220009309
    Abstract: A refrigeration cycle device includes a heat pump cycle, a high-temperature heat medium circuit, and a low-temperature heat medium circuit. The low-temperature heat medium circuit includes a plurality of heat absorption devices configured to have a heat absorption amount to be absorbed by the low-temperature heat medium flowing out of a low-temperature heat medium-refrigerant heat exchanger, and a heat absorption adjusting unit configured to change the heat absorption amount of the low-temperature heat medium in the respective heat absorption devices.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Koji MIURA, Hiroaki KAWANO, Motohiro YAMAGUCHI, Kazuya TANIGUCHI, Yoshiki KATO, Masamichi MAKIHARA, Takahiro MAEDA, Kuniyoshi TANIOKA, Toru OKAMURA, Naoya MAKIMOTO
  • Publication number: 20220011006
    Abstract: An air conditioner includes a heat pump cycle, a heating unit, a low-temperature side heat medium circuit, and a heat dissipation amount adjustment control unit. The heat pump cycle has a compressor, a condenser, a decompression unit, and an evaporator. The heating unit has a heating heat exchanger, an outside air radiator, and a heat dissipation amount adjustment unit. The low-temperature side heat medium circuit has a heat generation device. The heat dissipation amount adjustment control unit controls the heat dissipation amount adjustment unit to adjust a heat dissipation amount in the outside air radiator such that a blown air temperature of the blown air heated by the heating heat exchanger approaches a predetermined target temperature.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Koji MIURA, Hiroaki KAWANO, Motohiro YAMAGUCHI, Kazuya TANIGUCHI, Yoshiki KATO, Masamichi MAKIHARA, Takahiro MAEDA, Kuniyoshi TANIOKA, Toru OKAMURA, Naoya MAKIMOTO, Atsushi YAMADA, Kenta KAYANO
  • Publication number: 20210316594
    Abstract: A vehicular air conditioner includes a refrigeration cycle system, a high-temperature heat medium circuit, and a low-temperature heat medium circuit. The high-temperature heat medium circuit includes an air-heat medium heat exchanger, a heater core, a branching portion, a common passage, a flow rate adjuster, and an auxiliary heat source. The air-heat medium heat exchanger exchanges heat between the heat medium and an outside air. The heater core is arranged parallel to the air-heat medium heat exchanger and causes the heat medium to transfer heat to a ventilation air. The branching portion divides a flow of the heat medium into a flow toward the air-heat medium heat exchanger and a flow toward the heater core. The auxiliary heat source is arranged in the common passage at a position upstream of the branching portion.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 14, 2021
    Inventors: Hiroaki KAWANO, Yoshiki KATO, Masamichi MAKIHARA, Takahiro MAEDA, Kuniyoshi TANIOKA, Toru OKAMURA, Naoya MAKIMOTO
  • Publication number: 20210291626
    Abstract: A refrigeration cycle device includes a high-temperature heating medium regulator and a controller. The high-temperature heating medium regulator regulates a high-temperature heating medium flow ratio between the flow rate of high-temperature heating medium flowing in an air heater and the flow rate of high-temperature heating medium flowing in a radiator. The controller controls the high-temperature heating medium regulator to regulate the high-temperature heating medium flow ratio such that excess heat is radiated to air outside the cabin by the radiator, of the heat radiated from the refrigerant to the high-temperature heating medium by a high-pressure-side heat exchanger, with respect to heat required for heating air blown into a cabin by the air heater to have a target outlet temperature.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Inventors: Naoya MAKIMOTO, Yoshiki KATO
  • Publication number: 20210289619
    Abstract: An electronic device includes a wiring board built on or made by (i) an insulating base member having an upper surface and (ii) a wiring arranged at least on the upper surface, including a land arranged on the upper surface to serve as the wiring. Electronic components arranged on the upper surface are sealed by a sealing resin body. The electronic components include a heat-generating component connected to the land and an other component. The wiring includes a conductor pattern arranged on the one surface and extending to the land to which the heat-generating component is connected. The sealing resin body on the upper surface has a hole at an overlap position of the conductor pattern in a plan view, with an opening of the hole facing upwardly.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 16, 2021
    Inventor: Yoshiki KATO
  • Publication number: 20210288561
    Abstract: A motor device includes a motor and a drive device. The motor includes a housing shaped in a bottomed cylinder shape, a stator and a rotor held by the housing, and a sensor magnet attached to a rotor surface on an upper surface of the rotor. The drive device includes a wiring board facing the sensor magnet, an electronic component mounted on the wiring board, a Hall element mounted on the wiring board to face the sensor magnet, and a sealing resin body sealing the wiring board. The sealing resin body includes, as a positioner for positioning the sealing resin body and the housing in a radial direction and in a circumferential direction centering on a motor shaft axis, an inlay wall surface and a fixing part.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 16, 2021
    Inventor: Yoshiki KATO
  • Publication number: 20210280925
    Abstract: In a device temperature regulator, an evaporator cools a target device by a latent heat of evaporation of a working fluid that absorbs heat from the target device and is evaporated. A first condenser includes a first heat exchange passage that condenses the working fluid evaporated in the evaporator by a heat exchange with an outside first medium. A second condenser includes a second heat exchange passage that condenses the working fluid evaporated in the evaporator by a heat exchange with an outside second medium. A gas-phase passage causes the working fluid evaporated in the evaporator to flow to the first condenser and the second condenser. Furthermore, a first liquid-phase passage causes the working fluid condensed in the first condenser to flow to the evaporator, and a second liquid-phase passage causes the working fluid condensed in the second condenser to flow to the evaporator.
    Type: Application
    Filed: August 2, 2017
    Publication date: September 9, 2021
    Inventors: Takeshi YOSHINORI, Takashi YAMANAKA, Yoshiki KATO, Masayuki TAKEUCHI, Koji MIURA, Yasumitsu OMI
  • Patent number: 11105536
    Abstract: A combined heat exchanger includes a heat exchange unit having a plurality of plate-like members stacked together. The heat exchange unit includes a heat absorption evaporation unit and an internal heat exchange unit. The heat absorption evaporation unit includes a heat absorption refrigerant passage, and the internal heat exchange unit includes a high pressure refrigerant passage and a low pressure refrigerant passage. The combined heat exchanger has at least one of a high pressure refrigerant outlet port that allows the refrigerant flowing out of the high pressure refrigerant passage to flow out to a cooling refrigerant passage and a low pressure refrigerant inlet port that allows the refrigerant flowing out of the cooling refrigerant passage to flow into the low pressure refrigerant passage.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: August 31, 2021
    Assignee: DENSO CORPORATION
    Inventors: Satoshi Suzuki, Yoshiki Kato
  • Patent number: 11029098
    Abstract: A device temperature regulator includes a forward passage in which a forward flow passage is formed to cause a working fluid to flow to a heat absorber from a heat radiator, and a backward passage in which a backward flow passage is formed to cause the working fluid to flow to the heat radiator from the heat absorber. In addition, the device temperature regulator includes a bubble generator, which generates a bubble in the working fluid collecting in the heat absorber and having a liquid phase, and a controller that causes the bubble generator to generate the bubble in a precondition is satisfied.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 8, 2021
    Assignee: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Yasumitsu Omi, Takashi Yamanaka, Yoshiki Kato, Takeshi Yoshinori, Koji Miura
  • Patent number: 11014430
    Abstract: A refrigeration cycle device has a compressor, a radiator, a decompressor, an evaporator, a heat medium cooling evaporator, a cooling target device, a detector, and a controller. The heat medium cooling evaporator cools a cooling heat medium by performing a heat exchange between the refrigerant decompressed in the decompressor and the cooling heat medium. The cooling heat medium cools the cooling target device. The detector detects a subcooling state of the cooling target device having a temperature lower than or equal to a reference temperature. Upon the detection of the subcooling state in the cooling target device by the detector, the controller increases the degree of superheat of the refrigerant flowing out of the heat medium cooling heat exchanger as compared to the degree of superheat of the refrigerant flowing out of the heat medium cooling heat exchanger when the detector does not detect the subcooling state.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 25, 2021
    Assignee: DENSO CORPORATION
    Inventors: Koji Miura, Yoshiki Kato, Masayuki Takeuchi, Nobuyuki Hashimura, Keigo Sato, Norihiko Enomoto, Kengo Sugimura, Ariel Marasigan
  • Patent number: 10989447
    Abstract: A refrigeration cycle device includes a compressor, a condenser, a first decompressor, an outside heat exchanger, and an evaporator. A predetermined part of a refrigerant passage from the condenser to the first decompressor through which the refrigerant flows is a condenser outlet portion. A predetermined part of a refrigerant passage from the first decompressor to the outside heat exchanger through which the refrigerant flows is an outside heat exchanger inlet portion. A predetermined part of a refrigerant passage from the outside heat exchanger to the second decompressor through which the refrigerant flows is an outside heat exchanger outlet portion. A volume capacity of the condenser outlet portion is larger than a volume capacity of the outside heat exchanger inlet portion. According to the refrigeration cycle device, preferable coefficient of performance of cycle can be achieved in different operation modes.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: April 27, 2021
    Assignee: DENSO CORPORATION
    Inventors: Koji Miura, Yoshiki Kato, Masayuki Takeuchi, Nobuyuki Hashimura, Keigo Sato, Norihiko Enomoto, Kengo Sugimura, Ariel Marasigan
  • Patent number: 10950909
    Abstract: A device temperature regulator is provided with a gas passage part that guides a gaseous working fluid evaporated in a device heat exchanger to a condenser, and a liquid passage part that guides a liquid working fluid condensed in the condenser to the device heat exchanger. The device temperature regulator is provided with a supply amount regulator that increases or decreases a supply amount of the liquid working fluid supplied to the device heat exchanger. The supply amount regulator decreases the supply amount of the liquid working fluid to the device heat exchanger such that a liquid surface is formed in a state where the gaseous working fluid is positioned at a lower side lower than a heat exchanging portion exchanging heat with a temperature regulation target device in the device heat exchanger, when a condition for keeping the temperature regulation target device at a temperature is satisfied.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: March 16, 2021
    Assignee: DENSO CORPORATION
    Inventors: Koji Miura, Takashi Yamanaka, Yasumitsu Omi, Yoshiki Kato, Masayuki Takeuchi, Takeshi Yoshinori
  • Patent number: 10919364
    Abstract: The present disclosure provides a vehicle air-conditioning device in which cooperative work with a power source is appropriate, which is easy to follow when the power source is restarted, and which reduces a driving force of a compressor at the time of restarting the power source. The vehicle air-conditioning device is provided with a refrigeration cycle. The refrigeration cycle has a compressor that is driven by a power source which may stop temporarily. The refrigeration cycle provides a low temperature and/or a high temperature. A high-temperature system and/or a low-temperature system is provided as a thermal buffer. The refrigeration cycle is provided with electric expansion valves which can be fully closed. The vehicle air-conditioning device is also provided with a control device, which fully closes the electric expansion valves when the compressor is temporarily stopped and which controls the electric expansion valves to the previous opening position when the compressor is restarted.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: February 16, 2021
    Assignee: DENSO CORPORATION
    Inventors: Ariel Marasigan, Koji Miura, Yoshiki Kato
  • Patent number: 10906141
    Abstract: A method for manufacturing a device temperature controller includes filling an inside of a circuit with working fluid by connecting a filling port of the circuit to a container that stores gas phase working fluid. The circuit constitutes a thermosiphon heat pipe and allows the working fluid to circulate in the circuit. In the filling, the working fluid inside the circuit is cooled by a cooling source. An inside temperature of the circuit is decreased to be lower than an inside temperature of the container, and thereby an inside pressure of the circuit is decreased to be lower than an inside pressure of the container.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: February 2, 2021
    Assignee: DENSO CORPORATION
    Inventors: Yasumitsu Omi, Takashi Yamanaka, Yoshiki Kato, Takeshi Yoshinori, Masayuki Takeuchi, Koji Miura
  • Patent number: 10899195
    Abstract: A refrigeration cycle device includes a high-pressure side heat exchanger, a low-pressure side heat exchanger, a temperature-adjustment target device to be temperature-adjusted with a high-pressure side refrigerant, an exterior heat exchanger exchanging heat between the high-pressure side refrigerant or a low-pressure side refrigerant and outside air, a switching portion configured to switch between a heat dissipation mode in which the high-pressure side refrigerant dissipates heat into the outside air in the exterior heat exchanger and a heat absorption mode in which the low-pressure side refrigerant absorbs heat from the outside air in the exterior heat exchanger, a cooling request operation portion, and a controller configured to control an operation of the switching portion to perform the heat absorption mode when the cooling request operation portion operates to request cooling of the air and the temperature-adjustment target device needs to be warmed up.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 26, 2021
    Assignee: DENSO CORPORATION
    Inventors: Koji Miura, Yoshiki Kato, Nobuyuki Hashimura, Ariel Marasigan
  • Publication number: 20200370451
    Abstract: When an EDU determines that a motor is in a control unstable state where the motor cannot be controlled to a target rotation speed due to a drive voltage output duty value being smaller than a threshold value, the EDU performs a control point shifting operation to shift a control point between a first control point, which is in the control unstable state, and a second control point, which is a control stable state outside the control unstable state. Thus, even when the motor is in a stepping rotation state, it is possible to control the target rotation speed regardless of influence of a cogging torque, and appropriately control the cam phase of the intake camshaft to a target phase when the engine is stopped.
    Type: Application
    Filed: April 22, 2020
    Publication date: November 26, 2020
    Inventor: Yoshiki KATO
  • Patent number: 10837348
    Abstract: A thermal management device for a vehicle includes heat medium circuits, a reserve tank, and a connector. The heat medium circulates through the heat medium circuits separately. The reserve tank is configured to separate an air bubble contained in the heat medium from the heat medium. The connector allows the reserve tank to come in communication with the heat medium circuits selectively. As such, an occurrence of the heat loss in the degassing performed in the reserve tank can be suppressed with the thermal management device for a vehicle including the heat medium circuits.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: November 17, 2020
    Assignee: DENSO CORPORATION
    Inventors: Norihiko Enomoto, Yoshiki Kato, Nobuyuki Hashimura, Kengo Sugimura, Koji Miura, Keigo Sato, Ariel Marasigan
  • Patent number: 10752089
    Abstract: An air conditioner is provided with: a refrigeration cycle including a subcooling heat exchanger that subcools a refrigerant having heat-dissipated in a high-pressure side heat exchanger by exchanging heat with a heat medium; a blower that blows the air to an air passage in an air-conditioning casing; an air cooler disposed in the air passage to cool the air; a heater core disposed on an air flow downstream side of the air cooler in the air passage to heat the air cooled by the air cooler; an auxiliary air heater disposed on the air flow downstream side of the air cooler and on an air flow upstream side of the air heater in the air passage, to heat the air cooled by the air cooler by exchanging heat with the heat medium; and a flow-rate adjustment portion configured to adjust a flow rate of the heat medium circulating between the subcooling heat exchanger and the auxiliary air heater.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: August 25, 2020
    Assignee: DENSO CORPORATION
    Inventors: Keigo Sato, Yoshiki Kato, Masayuki Takeuchi
  • Patent number: 10723203
    Abstract: A refrigeration cycle device includes: a first expansion valve that decompresses a refrigerant flowing out of a high-pressure side heat exchanger; an exterior heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve and outside air; a second expansion valve that decompresses the refrigerant flowing out of the exterior heat exchanger; a low-pressure side heat exchanger arranged in series with the exterior heat exchanger; a cooler core that exchanges heat between the heat medium cooled by the low-pressure side heat exchanger and air to be blown into a vehicle interior to cool the air; and a controller configured to switch between a heat absorption mode and a heat dissipation mode by adjusting an amount of decompression in each of the first expansion valve and the second expansion valve.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: July 28, 2020
    Assignee: DENSO CORPORATION
    Inventors: Yoshiki Kato, Nobuyuki Hashimura, Koji Miura, Norihiko Enomoto, Kengo Sugimura, Keigo Sato, Masayuki Takeuchi, Ariel Marasigan
  • Patent number: 10723199
    Abstract: A vehicular heat management device includes a first heat source, a second heat source, a heater core, a first heat medium pathway, a second heat medium pathway, a heater core pathway, a switching portion, and a control unit. The first heat source is provided in the first heat medium pathway, and the second heat source is provided in the second heat medium pathway. The heater core is provided in the heater core pathway. The switching portion switches between flowing connection and flowing disconnection. The control unit performs at least one of a switching control and a second heat source control when a temperature of the heat medium of the heater core pathway is at or above a predetermined temperature. In the switching control, the switching portion connects the second heat medium pathway to the heater core pathway. In the second heat source control, the second heat source generates heat.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: July 28, 2020
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiki Kato, Masayuki Takeuchi, Keigo Sato, Koji Miura, Norihiko Enomoto, Kengo Sugimura, Ariel Marasigan, Ikuo Ozawa, Nobuharu Kakehashi, Yoshikazu Shinpo, Yoichi Onishi, Toshio Murata