Patents by Inventor Yoshiki Matoba

Yoshiki Matoba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11022570
    Abstract: An X-ray transmission inspection apparatus includes an X-ray source for irradiating a sample with X-rays, a two-dimensional sensor for detecting transmission X-rays passing through the sample, a sample moving mechanism for moving the sample, a calculation unit for processing an image of the transmission X-rays detected by the two-dimensional sensor, and a display unit for displaying a cross-sectional image. When V1 is a speed at which the sample moves, F is a frame rate of the two-dimensional sensor, A is a sample pitch of the two-dimensional sensor, and LS is a distance between the X-ray source and the two-dimensional sensor, the calculation unit creates a cross-sectional image taken at a distance L from the X-ray source by adding the images of the pixels positioned at an interval of [(LS×V2)/(L×F×A)] in a direction in which the sample moves.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: June 1, 2021
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventor: Yoshiki Matoba
  • Patent number: 10847355
    Abstract: Disclosed is a mass analysis apparatus and method, wherein the precision of detection of a first material including a second material is improved, without enlarging the apparatus, and the measurement time is reduced. The mass analysis apparatus for analyzing a sample containing a first material including an organic compound and at least one second material including an organic compound and having a mass spectrum peak overlapping that of the first material includes a peak correction unit, wherein, when an intensity ratio (peak B)/(peak A) of peak A, not overlapping that of the first material, and peak B, overlapping that of the first material, is a correction coefficient (W), an intensity of a net peak D of the mass spectrum of the first material is calculated by subtracting W×(intensity of peak A) from an intensity of a peak C of the mass spectrum of the first material in the sample.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: November 24, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Masahiro Sakuta, Shin Okawa, Yoshiki Matoba
  • Patent number: 10823686
    Abstract: Detection can be performed even for a thick inspection target object through time delay integration without degradation of spatial resolution. There is provided an X-ray inspection device configured to include: an X-ray source that generates X-rays; a transport unit that performs transporting a sample; a detecting unit that has a time delay integration type detector which detects X-rays generated by the X-ray source and transmitted through the sample transported by the transport unit; and a defect determining unit that processes a signal obtained by detecting the X-rays transmitted through the sample by the time delay integration type detector of the detecting unit and determines a defect in the sample. The transport unit performs transporting the sample while causing the sample to rotate in synchronization with the transporting when the sample passes in front of the time delay integration type detector of the detecting unit.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: November 3, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Yuta Urano, Kaifeng Zhang, Yoshiki Matoba, Akihiro Takeda
  • Patent number: 10651018
    Abstract: Disclosed is an apparatus for and a method of mass analysis, the apparatus and the method being capable of improving a detection accuracy of a target substance including impurities, without increasing a size of the apparatus, and shortening measuring time. The apparatus analyzing a sample containing a target substance and one or more interfering substances, which have a peak of a mass spectrum overlapping that of the target substance includes: a peak correction unit calculating an intensity of net peak D of the mass spectrum of the target substance by subtracting a total sum of estimated intensities of the peak B, which are calculated every predetermined time interval according to the intensity of the peak A and a nonlinear relation F between the peak A and the peak B, from an intensity of peak C of a mass spectrum of the target substance of the sample.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: May 12, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Masahiro Sakuta, Yoshiki Matoba
  • Patent number: 10636638
    Abstract: Disclosed is a mass analysis apparatus and method, wherein the precision of detection of a first material including a second material is improved, without enlarging the apparatus, and the measurement time is reduced. The mass analysis apparatus for analyzing a sample containing a first material including an organic compound and at least one second material including an organic compound and having a mass spectrum peak overlapping that of the first material includes a peak correction unit, wherein, when an intensity ratio (peak B)/(peak A) of peak A, not overlapping that of the first material, and peak B, overlapping that of the first material, is a correction coefficient (W), an intensity of a net peak D of the mass spectrum of the first material is calculated by subtracting W×(intensity of peak A) from an intensity of a peak C of the mass spectrum of the first material in the sample.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: April 28, 2020
    Assignee: HITATCHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Masahiro Sakuta, Shin Okawa, Yoshiki Matoba
  • Publication number: 20200118804
    Abstract: Disclosed is a mass analysis apparatus and method, wherein the precision of detection of a first material including a second material is improved, without enlarging the apparatus, and the measurement time is reduced. The mass analysis apparatus for analyzing a sample containing a first material including an organic compound and at least one second material including an organic compound and having a mass spectrum peak overlapping that of the first material includes a peak correction unit, wherein, when an intensity ratio (peak B)/(peak A) of peak A, not overlapping that of the first material, and peak B, overlapping that of the first material, is a correction coefficient (W), an intensity of a net peak D of the mass spectrum of the first material is calculated by subtracting W×(intensity of peak A) from an intensity of a peak C of the mass spectrum of the first material in the sample.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Masahiro SAKUTA, Shin OKAWA, Yoshiki MATOBA
  • Publication number: 20200041425
    Abstract: An X-ray transmission inspection apparatus includes an X-ray source for irradiating a sample with X-rays, a two-dimensional sensor for detecting transmission X-rays passing through the sample, a sample moving mechanism for moving the sample, a calculation unit for processing an image of the transmission X-rays detected by the two-dimensional sensor, and a display unit for displaying a cross-sectional image. When V1 is a speed at which the sample moves, F is a frame rate of the two-dimensional sensor, A is a sample pitch of the two-dimensional sensor, and LS is a distance between the X-ray source and the two-dimensional sensor, the calculation unit creates a cross-sectional image taken at a distance L from the X-ray source by adding the images of the pixels positioned at an interval of [(LS×V2)/(L×F×A)] in a direction in which the sample moves.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 6, 2020
    Inventor: Yoshiki MATOBA
  • Publication number: 20190214240
    Abstract: Disclosed is an apparatus for and a method of mass analysis, the apparatus and the method being capable of improving a detection accuracy of a target substance including impurities, without increasing a size of the apparatus, and shortening measuring time. The apparatus analyzing a sample containing a target substance and one or more interfering substances, which have a peak of a mass spectrum overlapping that of the target substance includes: a peak correction unit calculating an intensity of net peak D of the mass spectrum of the target substance by subtracting a total sum of estimated intensities of the peak B, which are calculated every predetermined time interval according to the intensity of the peak A and a nonlinear relation F between the peak A and the peak B, from an intensity of peak C of a mass spectrum of the target substance of the sample.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 11, 2019
    Inventors: Masahiro SAKUTA, Yoshiki MATOBA
  • Publication number: 20190027349
    Abstract: Disclosed is a mass analysis apparatus and method, wherein the precision of detection of a first material including a second material is improved, without enlarging the apparatus, and the measurement time is reduced. The mass analysis apparatus for analyzing a sample containing a first material including an organic compound and at least one second material including an organic compound and having a mass spectrum peak overlapping that of the first material includes a peak correction unit, wherein, when an intensity ratio (peak B)/(peak A) of peak A, not overlapping that of the first material, and peak B, overlapping that of the first material, is a correction coefficient (W), an intensity of a net peak D of the mass spectrum of the first material is calculated by subtracting W×(intensity of peak A) from an intensity of a peak C of the mass spectrum of the first material in the sample.
    Type: Application
    Filed: July 20, 2018
    Publication date: January 24, 2019
    Inventors: Masahiro SAKUTA, Shin OKAWA, Yoshiki MATOBA
  • Patent number: 10054555
    Abstract: Disclosed are an X-ray transmission inspection apparatus and an inspection method using the same that are capable of preventing over-detection and erroneous detection of foreign matter even when variations in vertical position of the sample occur. The X-ray transmission inspection apparatus includes: an X-ray source (2) irradiating a sample with X-rays; a sample moving device (3) moving the sample S continuously to a predetermined direction while X-rays X are emitted from the X-ray source; a time delay integration sensor (TDI sensor) (4) provided opposed to the X-ray source based on the sample, and detecting the X-rays transmitted through the sample; a distance sensor (5) measuring a distance between the X-ray source and the sample; and a TDI controller (6) controlling the TDI sensor by changing a charge transfer speed of the TDI sensor (4) in real time based on variations in the distance measured by the distance sensor.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: August 21, 2018
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Yoshiki Matoba, Akihiro Takeda, Shingo Tsuboi, Toshihiro Sakai
  • Publication number: 20180202947
    Abstract: Detection can be performed even for a thick inspection target object through time delay integration without degradation of spatial resolution. There is provided an X-ray inspection device configured to include: an X-ray source that generates X-rays; a transport unit that performs transporting a sample; a detecting unit that has a time delay integration type detector which detects X-rays generated by the X-ray source and transmitted through the sample transported by the transport unit; and a defect determining unit that processes a signal obtained by detecting the X-rays transmitted through the sample by the time delay integration type detector of the detecting unit and determines a defect in the sample. The transport unit performs transporting the sample while causing the sample to rotate in synchronization with the transporting when the sample passes in front of the time delay integration type detector of the detecting unit.
    Type: Application
    Filed: May 13, 2016
    Publication date: July 19, 2018
    Inventors: Yuta URANO, Kaifeng ZHANG, Yoshiki MATOBA, Akihiro TAKEDA
  • Patent number: 9863896
    Abstract: An X-ray transmission inspection apparatus includes: an X-ray source configured to irradiate a sample with an X-ray; a detector configured to be disposed on a side opposite to the X-ray source with respect to the sample and to detect the X-ray which is transmitted through the sample using a phosphor; a shield member configured to be arranged to face a detection surface of the detector and to block a part of X-rays to partially form a shield area from the X-rays on the detection surface; and a shield moving mechanism configured to move the shield member relative to the detector to enable change of a position of the shield area.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 9, 2018
    Assignee: Hitachi High-Tech Science Corporation
    Inventor: Yoshiki Matoba
  • Publication number: 20170031054
    Abstract: Disclosed are an X-ray transmission inspection apparatus and an inspection method using the same that are capable of preventing over-detection and erroneous detection of foreign matter even when variations in vertical position of the sample occur. The X-ray transmission inspection apparatus includes: an X-ray source (2) irradiating a sample with X-rays; a sample moving device (3) moving the sample S continuously to a predetermined direction while X-rays X are emitted from the X-ray source; a time delay integration sensor (TDI sensor) (4) provided opposed to the X-ray source based on the sample, and detecting the X-rays transmitted through the sample; a distance sensor (5) measuring a distance between the X-ray source and the sample; and a TDI controller (6) controlling the TDI sensor by changing a charge transfer speed of the TDI sensor (4) in real time based on variations in the distance measured by the distance sensor.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 2, 2017
    Inventors: Yoshiki MATOBA, Akihiro TAKEDA, Shingo TSUBOI, Toshihiro SAKAI
  • Patent number: 9410906
    Abstract: An X-ray fluorescence spectrometer includes: an X-ray source which irradiates a sample with primary X-rays; a light condensing device which condenses the primary X-rays to reduce an irradiation area on the sample; a detector which detects fluorescent X-rays produced from the sample irradiated with the primary X-rays; a housing which accommodates the X-ray source and the light condensing device; a temperature sensor which is disposed in at least one of the X-ray source and the periphery of the X-ray source; at least one external-air fan which is disposed on the housing, and which can exchange internal air with external air; and a control section which drives the external-air fan based on temperature information detected by the temperature sensor, to adjust the ambient temperature around the X-ray source to a constant temperature.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: August 9, 2016
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Ryusuke Hirose, Haruo Takahashi, Yoshiki Matoba, Koichi Tamura
  • Patent number: 9400255
    Abstract: An X-ray fluorescence spectrometer includes: a sample stage configured to place a sample thereon; an X-ray source configured to irradiate the sample with primary X-rays; a detector, which is configured to detect fluorescent X-rays produced from the sample irradiated with the primary X-rays, and which includes an X-ray incident window formed by a window material through which fluorescent X-rays is transmittable; and a gas blowing mechanism configured to blow a gas to at least one of an outer surface of the X-ray incident window and the sample stage.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: July 26, 2016
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Hiroaki Nohara, Yoshiki Matoba, Noriaki Sakai, Toshitada Takeuchi
  • Publication number: 20160041110
    Abstract: An X-ray transmission inspection apparatus is provided with: an X-ray source configured to irradiate a sample with an X-ray; a sample moving mechanism configured to continuously move the sample in a specific direction during irradiation with the X-ray from the X-ray source; a TDI sensor disposed at a side opposite to the X-ray source with the sample interposed therebetween and configured to detect the X-ray transmitted by the sample; and a polycapillary disposed between the X-ray source and the sample and configured to convert the X-ray radially emitted from the X-ray source into a parallel X-ray parallel to a thickness direction of the sample.
    Type: Application
    Filed: July 21, 2015
    Publication date: February 11, 2016
    Inventors: Yoshiki MATOBA, Akihiro TAKEDA, Kaifeng ZHANG
  • Patent number: 9213007
    Abstract: A foreign matter detector includes an X-ray source which irradiates a sample moving in a constant direction with primary X-rays, a parallel two-dimensional slit which includes a plurality of slits arranged in at least a moving direction of the sample and emits parallel secondary X-rays by extracting a parallel component of secondary X-rays generated from the sample, a dispersing element which disperses the parallel secondary X-rays to obtain a specific X-ray fluorescence, a TDI sensor which receives the X-ray fluorescence, and a control unit which controls the TDI sensor to detect a foreign matter corresponding to the X-ray fluorescence. The control unit integrates a luminance value of the X-ray fluorescence received by the TDI sensor while matching a direction and a speed of charge transfer of the TDI sensor to a direction and a speed of movement of the sample.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 15, 2015
    Assignee: Hitachi High-Tech Science Corporation
    Inventor: Yoshiki Matoba
  • Patent number: 9188553
    Abstract: An X-ray fluorescence analyzer includes a sample stage having an opening at an X-ray irradiation position, an X-ray source which irradiates a sample placed on the opening with a primary X-ray from below, a detector which detects an X-ray fluorescence generated from the sample, a transparent drop prevention plate supported to be advanced and retracted immediately below the opening, a drive mechanism which advances and retracts the drop prevention plate, an observation camera which observes the drop prevention plate positioned immediately below the opening, and an operation unit which processes an image of the drop prevention plate which is captured by the observation camera. The operation unit detects a foreign matter on the drop prevention plate based on an image difference between images before and after the drive mechanism moves or vibrates the drop prevention plate within an observation range of the observation camera.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 17, 2015
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Masahiro Sakuta, Kiyoshi Hasegawa, Yoshiki Matoba
  • Publication number: 20150276626
    Abstract: An X-ray transmission inspection apparatus includes: an X-ray source configured to irradiate a sample with an X-ray; a detector configured to be disposed on a side opposite to the X-ray source with respect to the sample and to detect the X-ray which is transmitted through the sample using a phosphor; a shield member configured to be arranged to face a detection surface of the detector and to block a part of X-rays to partially form a shield area from the X-rays on the detection surface; and a shield moving mechanism configured to move the shield member relative to the detector to enable change of a position of the shield area.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 1, 2015
    Applicant: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventor: Yoshiki Matoba
  • Patent number: 9001966
    Abstract: A transmission X-ray analyzer (1) for detecting a transmission X-ray image of a sample (100) that is continuous in a band shape includes: a TDI sensor (14); an X-ray source (12) arranged opposed to a TDI sensor; a pair of support rollers (31, 32) arranged away from the TDI sensor between the TDI sensor and the X-ray source, the pair of support rollers being configured to transport the sample to a detection position of the TDI sensor while keeping a constant interval between the TDI sensor and the sample; and a pair of outside rollers (51, 52) arranged respectively on an outer side of the pair of support rollers in a transportation direction (L). One of the pair of support rollers and one of the pair of outside rollers are arranged at different positions as to apply a tension to the sample between the pair of support rollers.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Hitachi High-Tech Science Corporation
    Inventor: Yoshiki Matoba