Patents by Inventor Yoshiyuki Nakao

Yoshiyuki Nakao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965856
    Abstract: A method for detecting a metal residue present in an electric-resistance-welded steel pipe includes a first step of inserting the electric-resistance-welded steel pipe into an exciting coil while relatively moving the electric-resistance-welded steel pipe in a longitudinal direction and magnetizing the electric-resistance-welded steel pipe using a direct current at a field intensity capable of magnetizing the electric-resistance-welded steel pipe and the metal residue up to a magnetic saturation state by the exciting coil and a second step of inserting the electric-resistance-welded steel pipe into a detecting coil while relatively moving the electric-resistance-welded steel pipe in the longitudinal direction, detecting an induced electromotive force generated in the detecting coil by a change in a magnetic flux caused by the direct-current magnetization by the exciting coil in the first step as an output signal of the detecting coil, and detecting the metal residue present in the electric-resistance-welded s
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 23, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Toshiyuki Suzuma, Yoshiyuki Nakao
  • Patent number: 11193910
    Abstract: A device of detecting magnetic characteristic change for a long material includes: an exciting coil into which the long material is inserted and which magnetizes the long material in a longitudinal direction; a detecting coil into which the long material is inserted and which detects a magnetic flux generated in the long material due to magnetization by the exciting coil; and a yoke member which has a first opening portion which is positioned on one side of the long material in the longitudinal direction and into which the long material is inserted and a second opening portion which is positioned on the other side of the long material in the longitudinal direction and into which the long material is inserted, and has a shape which is substantially axially symmetrical about an axis passing the first opening portion and the second opening portion, and the exciting coil and the detecting coil are surrounded by the yoke member, the first opening portion, and the second opening portion.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 7, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Toshiyuki Suzuma, Yoshiyuki Nakao, Yoshiyuki Ota
  • Publication number: 20210116417
    Abstract: A method for detecting a metal residue present in an electric-resistance-welded steel pipe includes a first step of inserting the electric-resistance-welded steel pipe into an exciting coil while relatively moving the electric-resistance-welded steel pipe in a longitudinal direction and magnetizing the electric-resistance-welded steel pipe using a direct current at a field intensity capable of magnetizing the electric-resistance-welded steel pipe and the metal residue up to a magnetic saturation state by the exciting coil and a second step of inserting the electric-resistance-welded steel pipe into a detecting coil while relatively moving the electric-resistance-welded steel pipe in the longitudinal direction, detecting an induced electromotive force generated in the detecting coil by a change in a magnetic flux caused by the direct-current magnetization by the exciting coil in the first step as an output signal of the detecting coil, and detecting the metal residue present in the electric-resistance-welded s
    Type: Application
    Filed: September 27, 2018
    Publication date: April 22, 2021
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Toshiyuki SUZUMA, Yoshiyuki NAKAO
  • Publication number: 20200284758
    Abstract: A device of detecting magnetic characteristic change for a long material includes: an exciting coil into which the long material is inserted and which magnetizes the long material in a longitudinal direction; a detecting coil into which the long material is inserted and which detects a magnetic flux generated in the long material due to magnetization by the exciting coil; and a yoke member which has a first opening portion which is positioned on one side of the long material in the longitudinal direction and into which the long material is inserted and a second opening portion which is positioned on the other side of the long material in the longitudinal direction and into which the long material is inserted, and has a shape which is substantially axially symmetrical about an axis passing the first opening portion and the second opening portion, and the exciting coil and the detecting coil are surrounded by the yoke member, the first opening portion, and the second opening portion.
    Type: Application
    Filed: June 29, 2018
    Publication date: September 10, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Toshiyuki SUZUMA, Yoshiyuki NAKAO, Yoshiyuki OTA
  • Patent number: 10416123
    Abstract: A method of adjusting flaw detection sensitivity on an array ultrasonic probe comprises disposing a plate material P1 oppositely to the ultrasonic probe such that an upper surface of the plate material is disposed to be approximately parallel to an array direction of the transducers 11, or disposing a tubular material P2 oppositely to the ultrasonic probe such that an axial direction of the tubular material is disposed to be approximately parallel to the array direction of the transducers. Ultrasonic waves are transmitted from each transducer toward the upper surface of the plate material or an outer surface of the tubular material, and echoes are received from the bottom surface of the plate material or an inner surface of the tubular material on each transducer. Flaw detection sensitivity of each transducer is adjusted to substantially equalize intensity of an echo received on each transducer.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: September 17, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masaki Yamano, Yoshiyuki Nakao, Shigetoshi Hyodo, Masaki Tanaka, Tsukasa Suda
  • Patent number: 9559058
    Abstract: A semiconductor device includes a semiconductor substrate, an oxygen-containing insulating film disposed above the above-described semiconductor substrate, a concave portion disposed in the above-described insulating film, a copper-containing first film disposed on an inner wall of the above-described concave portion, a copper-containing second film disposed above the above-described first film and filled in the above-described concave portion, and a manganese-containing oxide layer disposed between the above-described first film and the above-described second film. Furthermore, a copper interconnection is formed on the above-described structure by an electroplating method and, subsequently, a short-time heat treatment is conducted at a temperature of 80° C. to 120° C.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: January 31, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Masaki Haneda, Michie Sunayama, Noriyoshi Shimizu, Nobuyuki Ohtsuka, Yoshiyuki Nakao, Takahiro Tabira
  • Patent number: 9291599
    Abstract: A magnetic testing apparatus 100 according to the present invention comprises: a first magnetizing device 1 for applying a DC bias magnetic field to a test object P in substantially parallel to the direction in which a flaw F to be detected extends; a second magnetizing device 2 for applying an AC magnetic field to the test object P substantially perpendicularly to the direction in which the flaw F to be detected extends; and a detecting device 3 for detecting leakage flux produced by the magnetization of the test object P accomplished by the first magnetizing device 1 and the second magnetizing device 2.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: March 22, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Toshiyuki Suzuma, Yoshiyuki Nakao, Makoto Sakamoto, Yoshiyuki Oota
  • Patent number: 9121833
    Abstract: A defect inspecting apparatus includes a first light source, a first image capture device that receives the reflection light emitted from the first light source and reflected by the outer peripheral surface of a lip part to grab the image of the outer peripheral surface of the lip part, a second light source, a second image capture device 8 that receives the reflection light emitted from the second light source and reflected by a load face to grab the image of the load face, a third light source, a third image capture device that receives the reflection light emitted from the third light source and reflected by a thread bottom face inspection zone 106 to grab the image of the thread bottom face inspection zone, and an inspection device for inspecting defects by processing the captured images grabbed by the first to third image capture devices.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: September 1, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazunori Anayama, Toshiyuki Suzuma, Yoshiyuki Nakao, Masami Ikeda, Kenta Sakai
  • Publication number: 20150135799
    Abstract: A method of adjusting flaw detection sensitivity on an array ultrasonic probe comprises disposing a plate material P1 oppositely to the ultrasonic probe such that an upper surface of the plate material is disposed to be approximately parallel to an array direction of the transducers 11, or disposing a tubular material P2 oppositely to the ultrasonic probe such that an axial direction of the tubular material is disposed to be approximately parallel to the array direction of the transducers. Ultrasonic waves are transmitted from each transducer toward the upper surface of the plate material or an outer surface of the tubular material, and echoes are received from the bottom surface of the plate material or an inner surface of the tubular material on each transducer. Flaw detection sensitivity of each transducer is adjusted to substantially equalize intensity of an echo received on each transducer.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 21, 2015
    Inventors: Masaki Yamano, Yoshiyuki Nakao, Shigetoshi Hyodo, Masaki Tanaka, Tsukasa Suda
  • Patent number: 8803516
    Abstract: In an eddy current testing method which involves using a rotatable eddy current testing probe in which a detection coil is arranged within an exciting coil, a change in detection sensitivity (a deviation of detection sensitivity) which changes depending on the rotational position of the detection coil is reduced. The eddy current testing probe includes an exciting coil EC1, a detection coil DC1, an exciting coil EC2 and a detection coil DC2, which are mounted on a disk DS. The eddy current testing probe is placed so as to face a circumferential surface of an object to be inspected T, which is in the shape of a circular cylinder, and the disk DS is rotated. Then, the distance (liftoff) between the detection coils DC1 and DC2 and an inspection surface changes. Therefore, also the detection sensitivity to a flaw signal changes. To reduce the change in detection sensitivity, the detection sensitivity is adjusted by detecting the rotational position (rotational angle) of the detection coils DC1 and DC2.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: August 12, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takashi Hibino, Takashi Fujimoto, Keisuke Komatsu, Yoshiyuki Nakao, Makoto Takata, Makoto Sakamoto
  • Publication number: 20140191751
    Abstract: A magnetic testing method and apparatus can accurately detect a flaw by magnetizing a test object to such a degree that the object becomes magnetically saturated while solving the problems of a large magnetizing device is required when only a DC magnetic field is applied and that the test object generates heat when only an AC magnetic field is applied. A magnetic testing apparatus comprises a first magnetizing device for applying a DC bias magnetic field to a test object P in substantially parallel to the direction in which a flaw F to be detected extends, a second magnetizing device for applying an AC magnetic field to the test object P substantially perpendicularly to the direction in which the flaw F to be detected extends, and a detecting device for detecting leakage flux produced by the magnetization of the test object P accomplished by the first and second magnetizing devices.
    Type: Application
    Filed: August 15, 2012
    Publication date: July 10, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Toshiyuki Suzuma, Yoshiyuki Nakao, Makoto Sakamoto, Yoshiuki Oota
  • Patent number: 8685265
    Abstract: An etching apparatus includes a process unit and a control unit. Emission intensity of plasma inside the process unit is obtained by an OES detector, a nonlinear regression analysis is performed by an etching control device to determine a regression formula. The nonlinear regression analysis is performed by using the emission intensity of the plasma obtained until a first time when the emission intensity of the plasma passes a peak, and a second time to be an etching end point is calculated by using the regression formula. The etching end point is calculated as a time when the emission intensity decreases for a predetermined value from the first time. The etching apparatus finishes an etching when the process reaches the etching end point. It is thereby possible to control the etching end point with high-accuracy.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: April 1, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yoshiyuki Nakao, Kazuo Hashimi
  • Patent number: 8638091
    Abstract: A rotary eddy current flaw detection probe device has a plurality of ?-shaped eddy current flaw detection probes attached in a rotating disc for detecting flaws in all directions regardless of the flaw direction. Four ?-shaped eddy current testing probes P11 to P22 are arranged around the rotation center Ds1 of a rotating disc 111 and are embedded in the disc 111. The coil planes of detector coils Ds11 to Ds22 of the testing probes P11 to P22 are parallel with each other, and are perpendicular to the rotation plane of the rotating disc 111. The coil planes of the detector coils incline at an angle ? relative to a line Y passing through the centers Ps11 and Ps12 of the probes P11 and P12. The detector coils Dc11 and Dc12 are cumulatively connected to each other and the detector coils Dc21 and Dc22 are differentially connected to each other.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: January 28, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takashi Hibino, Takashi Fujimoto, Shigeki Namekata, Keisuke Komatsu, Yoshiyuki Nakao, Makoto Takata, Makoto Sakamoto
  • Patent number: 8552717
    Abstract: It is an object of the present invention to provide an eddy current testing apparatus capable of accurately detecting any flaws occurring in a columnar or cylindrical subject to be tested regardless of their extending directions, with the use of the same probe coil. The eddy current testing apparatus 100 according to the present invention comprises a spinning plate 1 and a probe coil 2 disposed on the spinning plate 1. The probe coil is a probe coil capable of obtaining a differential output about a scanning direction of a detection signal which corresponds to a detected eddy current induced in the subject to be tested. The spinning plate is disposed in such a position that a spinning center RC of the spinning plate faces with an axial center PC of the subject to be tested.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: October 8, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shigetoshi Hyodo, Yoshiyuki Nakao
  • Patent number: 8497208
    Abstract: A method for producing a semiconductor device including a first conductor disposed on a semiconductor substrate; an oxygen-containing insulation film disposed on the semiconductor substrate and on the first conductor, the insulation film having a contact hole which extends to the first conductor and a trench which is connected to an upper portion of the contact hole; a zirconium oxide film disposed on a side surface of the contact hole and a side surface and a bottom surface of the trench; a zirconium film disposed on the zirconium oxide film inside the contact hole and inside the trench; and a second conductor composed of Cu embedded into the contact hole and into the trench.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: July 30, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Michie Sunayama, Yoshiyuki Nakao, Noriyoshi Shimizu
  • Publication number: 20120327217
    Abstract: A defect inspecting apparatus includes a first light source, a first image capture device that receives the reflection light emitted from the first light source and reflected by the outer peripheral surface of a lip part to grab the image of the outer peripheral surface of the lip part, a second light source, a second image capture device 8 that receives the reflection light emitted from the second light source and reflected by a load face to grab the image of the load face, a third light source, a third image capture device that receives the reflection light emitted from the third light source and reflected by a thread bottom face inspection zone 106 to grab the image of the thread bottom face inspection zone, and an inspection device for inspecting defects by processing the captured images grabbed by the first to third image capture devices.
    Type: Application
    Filed: July 17, 2012
    Publication date: December 27, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Kazunori ANAYAMA, Toshiyuki SUZUMA, Yoshiyuki NAKAO, Masami IKEDA, Kenta SAKAI
  • Publication number: 20120288969
    Abstract: An etching apparatus includes a process unit and a control unit. Emission intensity of plasma inside the process unit is obtained by an OES detector, a nonlinear regression analysis is performed by an etching control device to determine a regression formula. The nonlinear regression analysis is performed by using the emission intensity of the plasma obtained until a first time when the emission intensity of the plasma passes a peak, and a second time to be an etching end point is calculated by using the regression formula. The etching end point is calculated as a time when the emission intensity decreases for a predetermined value from the first time. The etching apparatus finishes an etching when the process reaches the etching end point. It is thereby possible to control the etching end point with high-accuracy.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Yoshiyuki Nakao, Kazuo Hashimi
  • Publication number: 20120181695
    Abstract: A semiconductor device includes a semiconductor substrate, an oxygen-containing insulating film disposed above the above-described semiconductor substrate, a concave portion disposed in the above-described insulating film, a copper-containing first film disposed on an inner wall of the above-described concave portion, a copper-containing second film disposed above the above-described first film and filled in the above-described concave portion, and a manganese-containing oxide layer disposed between the above-described first film and the above-described second film. Furthermore, a copper interconnection is formed on the above-described structure by an electroplating method and, subsequently, a short-time heat treatment is conducted at a temperature of 80° C. to 120° C.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 19, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Masaki HANEDA, Michie SUNAYAMA, Noriyoshi SHIMIZU, Nobuyuki OHTSUKA, Yoshiyuki NAKAO, Takahiro TABIRA
  • Publication number: 20120161758
    Abstract: In an eddy current testing method which involves using a rotatable eddy current testing probe in which a detection coil is arranged within an exciting coil, a change in detection sensitivity (a deviation of detection sensitivity) which changes depending on the rotational position of the detection coil is reduced. The eddy current testing probe includes an exciting coil EC1, a detection coil DC1, an exciting coil EC2 and a detection coil DC2, which are mounted on a disk DS. The eddy current testing probe is placed so as to face a circumferential surface of an object to be inspected T, which is in the shape of a circular cylinder, and the disk DS is rotated. Then, the distance (liftoff) between the detection coils DC1 and DC2 and an inspection surface changes. Therefore, also the detection sensitivity to a flaw signal changes. To reduce the change in detection sensitivity, the detection sensitivity is adjusted by detecting the rotational position (rotational angle) of the detection coils DC1 and DC2.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 28, 2012
    Inventors: Takashi Hibino, Takashi Fujimoto, Keisuke Komatsu, Yoshiyuki Nakao, Makoto Takata, Makoto Sakamoto
  • Patent number: 8168532
    Abstract: A semiconductor device includes a semiconductor substrate, an oxygen-containing insulating film disposed above the above-described semiconductor substrate, a concave portion disposed in the above-described insulating film, a copper-containing first film disposed on an inner wall of the above-described concave portion, a copper-containing second film disposed above the above-described first film and filled in the above-described concave portion, and a manganese-containing oxide layer disposed between the above-described first film and the above-described second film. Furthermore, a copper interconnection is formed on the above-described structure by an electroplating method and, subsequently, a short-time heat treatment is conducted at a temperature of 80° C. to 120° C.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: May 1, 2012
    Assignee: Fujitsu Limited
    Inventors: Masaki Haneda, Michie Sunayama, Noriyoshi Shimizu, Nobuyuki Ohtsuka, Yoshiyuki Nakao, Takahiro Tabira