Patents by Inventor Yosuke KOMASAKI

Yosuke KOMASAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210288557
    Abstract: A rotation detection apparatus includes a magnetic field generation source, a spin valve element, and a calculator. The magnetic field generation source is rotatable while generating a magnetic field, and has a temperature coefficient of residual magnetic flux density having an absolute value of 0.1%/° C. or less. The spin valve element includes a magnetic layer configured to generate a movement of a magnetic domain wall in accordance with a change in direction of the magnetic field associated with a rotation of the magnetic field generation source. The calculator is configured to detect a change in resistance of the spin valve element caused by the movement of the magnetic domain wall and to calculate the number of rotations or a rotation angle of the magnetic field generation source.
    Type: Application
    Filed: December 9, 2020
    Publication date: September 16, 2021
    Applicant: TDK CORPORATION
    Inventors: Yosuke KOMASAKI, Naoki OHTA
  • Patent number: 11037715
    Abstract: A magnetic sensor includes a plurality of magnetic detection elements, and a plurality of magnetic field generators associated with the plurality of magnetic detection elements. Each of the plurality of magnetic field generators includes a first ferromagnetic material section and a first antiferromagnetic material section. The first antiferromagnetic material section is in contact with and exchange-coupled to the first ferromagnetic material section. The first ferromagnetic material section has an overall magnetization. The plurality of magnetic field generators includes first and second magnetic field generators configured so that the overall magnetization of the first ferromagnetic material section of the first magnetic field generator is in a different direction from the overall magnetization of the first ferromagnetic material section of the second magnetic field generator.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 15, 2021
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Publication number: 20210020552
    Abstract: An electronic component package has an outer edge including a first side and a second side adjacent to each other. The electronic component package includes a first electronic component chip, a second electronic component chip provided at a distance from the first electronic component chip, one or more first terminals disposed along the first side, one or more second terminals disposed along the second side, and one or more first conductors. The one or more first conductors couple the one or more first terminals to the first electronic component chip, with the one or more first terminals being uncoupled to the second electronic component chip.
    Type: Application
    Filed: June 26, 2020
    Publication date: January 21, 2021
    Applicant: TDK CORPORATION
    Inventors: Yosuke KOMASAKI, Hiroshi NAGANUMA, Naoki OHTA
  • Patent number: 10613161
    Abstract: A magnetic sensor includes an MR element and two stacks. The two stacks are spaced apart from each other along a first direction. Each stack includes a ferromagnetic layer and an antiferromagnetic layer stacked along a second direction orthogonal to the first direction. An element placement region is formed between the two stacks when viewed in the second direction. The element placement region includes a middle region and two end regions. The MR element is placed to lie within the middle region.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 7, 2020
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Patent number: 10498198
    Abstract: A magnetic sensor includes a magnetic detection element circuit that includes first and second magnetic detection elements, which are connected in series, and an output terminal, which is positioned between the first and second magnetic detection elements; an impedance matching device, which has a prescribed input voltage range and is connected to an output terminal of the magnetic detection element circuit; a first current supply source, which supplies an electric current to the magnetic detection element circuit; and a second current supply source, which supplies an electric current to the impedance matching device. A resistor is provided between the output terminal of the magnetic detection element circuit and the first current supply source and/or a reference electric potential point.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: December 3, 2019
    Assignee: TDK Corporation
    Inventors: Yosuke Komasaki, Naoki Ohta, Hayato Miyashita, Takakazu Imai, Hiraku Hirabayashi, Masanori Sakai, Satoshi Abe, Tsuyoshi Umehara
  • Publication number: 20190198213
    Abstract: A magnetic sensor includes a plurality of magnetic detection elements, and a plurality of magnetic field generators associated with the plurality of magnetic detection elements. Each of the plurality of magnetic field generators includes a first ferromagnetic material section and a first antiferromagnetic material section. The first antiferromagnetic material section is in contact with and exchange-coupled to the first ferromagnetic material section. The first ferromagnetic material section has an overall magnetization. The plurality of magnetic field generators includes first and second magnetic field generators configured so that the overall magnetization of the first ferromagnetic material section of the first magnetic field generator is in a different direction from the overall magnetization of the first ferromagnetic material section of the second magnetic field generator.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Applicant: TDK CORPORATION
    Inventor: Yosuke KOMASAKI
  • Patent number: 10256022
    Abstract: A magnetic field generator includes a plurality of magnetic field generation units arranged in a predetermined pattern to generate a plurality of external magnetic fields. Each of the plurality of magnetic field generation units includes a first ferromagnetic material section and a first antiferromagnetic material section. The first antiferromagnetic material section is in contact with and exchange-coupled to the first ferromagnetic material section. The first ferromagnetic material section has its overall magnetization. The plurality of magnetic field generation units include two magnetic field generation units configured so that the overall magnetizations of their respective first ferromagnetic material sections are in different directions from each other.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: April 9, 2019
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Publication number: 20180254686
    Abstract: A magnetic sensor includes a magnetic detection element circuit that includes first and second magnetic detection elements, which are connected in series, and an output terminal, which is positioned between the first and second magnetic detection elements; an impedance matching device, which has a prescribed input voltage range and is connected to an output terminal of the magnetic detection element circuit; a first current supply source, which supplies an electric current to the magnetic detection element circuit; and a second current supply source, which supplies an electric current to the impedance matching device. A resistor is provided between the output terminal of the magnetic detection element circuit and the first current supply source and/or a reference electric potential point.
    Type: Application
    Filed: December 5, 2017
    Publication date: September 6, 2018
    Inventors: Yosuke Komasaki, Naoki Ohta, Hayato Miyashita, Takakazu Imai, Hiraku Hirabayashi, Masanori Sakai, Satoshi Abe, Tsuyoshi Umehara
  • Patent number: 10060992
    Abstract: A magnetic sensor includes an MR element and a bias magnetic field generation unit. The MR element includes a magnetization pinned layer, a nonmagnetic layer and a free layer stacked along Z direction. The bias magnetic field generation unit includes a first antiferromagnetic layer, a ferromagnetic layer and a second antiferromagnetic layer stacked along the Z direction. The bias magnetic field generation unit has a first end face and and a second end face located at opposite ends in the Z direction. The MR element is placed such that the entirety of the MR element is contained in a space formed by shifting an imaginary plane equivalent to the first end face of the bias magnetic field generation unit away from the second end face along the Z direction.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: August 28, 2018
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Publication number: 20180180685
    Abstract: A magnetic sensor includes an MR element and two stacks. The two stacks are spaced apart from each other along a first direction. Each stack includes a ferromagnetic layer and an antiferromagnetic layer stacked along a second direction orthogonal to the first direction. An element placement region is formed between the two stacks when viewed in the second direction. The element placement region includes a middle region and two end regions. The MR element is placed to lie within the middle region.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 28, 2018
    Applicant: TDK CORPORATION
    Inventor: Yosuke KOMASAKI
  • Patent number: 9921275
    Abstract: A magnetic sensor includes an MR element and two bias magnetic field generation units. The two bias magnetic field generation units are spaced apart from each other along a first direction and configured to cooperate with each other to generate a bias magnetic field. Each bias magnetic field generation unit includes a ferromagnetic layer and an antiferromagnetic layer stacked along a second direction orthogonal to the first direction. An element placement region is formed between the two bias magnetic field generation units when viewed in the second direction in an imaginary plane perpendicular to the second direction and intersecting the MR element. The element placement region includes a middle region and two end regions. The MR element is placed to lie within the middle region in the imaginary plane.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 20, 2018
    Assignee: TDK CORPORATION
    Inventor: Yosuke Komasaki
  • Publication number: 20160370438
    Abstract: A magnetic field generator includes a plurality of magnetic field generation units arranged in a predetermined pattern to generate a plurality of external magnetic fields. Each of the plurality of magnetic field generation units includes a first ferromagnetic material section and a first antiferromagnetic material section. The first antiferromagnetic material section is in contact with and exchange-coupled to the first ferromagnetic material section. The first ferromagnetic material section has its overall magnetization. The plurality of magnetic field generation units include two magnetic field generation units configured so that the overall magnetizations of their respective first ferromagnetic material sections are in different directions from each other.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 22, 2016
    Applicant: TDK CORPORATION
    Inventor: Yosuke KOMASAKI
  • Publication number: 20160282144
    Abstract: A magnetic sensor includes an MR element and two bias magnetic field generation units. The two bias magnetic field generation units are spaced apart from each other along a first direction and configured to cooperate with each other to generate a bias magnetic field. Each bias magnetic field generation unit includes a ferromagnetic layer and an antiferromagnetic layer stacked along a second direction orthogonal to the first direction. An element placement region is formed between the two bias magnetic field generation units when viewed in the second direction in an imaginary plane perpendicular to the second direction and intersecting the MR element. The element placement region includes a middle region and two end regions. The MR element is placed to lie within the middle region in the imaginary plane.
    Type: Application
    Filed: December 22, 2015
    Publication date: September 29, 2016
    Applicant: TDK CORPORATION
    Inventor: Yosuke KOMASAKI
  • Publication number: 20160238674
    Abstract: A magnetic sensor includes an MR element and a bias magnetic field generation unit. The MR element includes a magnetization pinned layer, a nonmagnetic layer and a free layer stacked along Z direction. The bias magnetic field generation unit includes a first antiferromagnetic layer, a ferromagnetic layer and a second antiferromagnetic layer stacked along the Z direction. The bias magnetic field generation unit has a first end face and and a second end face located at opposite ends in the Z direction. The MR element is placed such that the entirety of the MR element is contained in a space formed by shifting an imaginary plane equivalent to the first end face of the bias magnetic field generation unit away from the second end face along the Z direction.
    Type: Application
    Filed: December 1, 2015
    Publication date: August 18, 2016
    Applicant: TDK CORPORATION
    Inventor: Yosuke KOMASAKI
  • Patent number: 8909489
    Abstract: A first detection unit has first and second detection circuits. A second detection unit has third and fourth detection circuits. Output signals of the second and fourth detection circuits differ from output signals of the first and third detection circuits in phase, respectively, by an odd number of times ¼ the signal period. The output signal of the third detection circuit differs from the output signal of the first detection circuit in phase by an integer multiple of ? the signal period other than an integer multiple of ½ the signal period. A rotating field sensor generates a first signal based on the output signals of the first and third detection circuits, generates a second signal based on the output signals of the second and fourth detection circuits, and calculates a detected angle value based on the first and second signals.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: December 9, 2014
    Assignee: TDK Corporation
    Inventors: Shunji Saruki, Hiraku Hirabayashi, Yosuke Komasaki
  • Patent number: 8736256
    Abstract: A rotating field sensor includes a first detection circuit that outputs a first signal indicating the intensity of a component of a rotating magnetic field in a first direction, a second detection circuit that outputs a second signal indicating the intensity of a component of the rotating magnetic field in a second direction, and an arithmetic circuit that calculates a detected angle value based on the first and second signals. Each of the first and second detection circuits includes at least one MR element row. Each MR element row is composed of a plurality of MR elements connected in series. Each MR element has a magnetization pinned layer. The plurality of MR elements forming each MR element row include one or more pairs of MR elements. Magnetization directions of the magnetization pinned layers in two MR elements making up a pair form a predetermined relative angle other than 0° and 180°.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 27, 2014
    Assignee: TDK Corporation
    Inventors: Yosuke Komasaki, Hiraku Hirabayashi, Shunji Saruki
  • Patent number: 8589105
    Abstract: An angle detection unit including first to third arithmetic units receives first and second signals that are associated with intensities of components of a rotating magnetic field in mutually different directions. The first arithmetic unit generates a sum of squares signal made up of the sum of squares of the first and second signals. Based on the sum of squares signal, the second arithmetic unit calculates a first error component estimate which is an estimated value of a first error component included in the first signal and a second error component estimate which is an estimated value of a second error component included in the second signal. The third arithmetic unit generates a first corrected signal by subtracting the first error component estimate from the first signal, generates a second corrected signal by subtracting the second error component estimate from the second signal, and calculates a detected angle value based on the first and second corrected signals.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 19, 2013
    Assignee: TDK Corporation
    Inventors: Yosuke Komasaki, Hiraku Hirabayashi
  • Publication number: 20120119729
    Abstract: A rotating field sensor includes a first detection circuit that outputs a first signal indicating the intensity of a component of a rotating magnetic field in a first direction, a second detection circuit that outputs a second signal indicating the intensity of a component of the rotating magnetic field in a second direction, and an arithmetic circuit that calculates a detected angle value based on the first and second signals. Each of the first and second detection circuits includes at least one MR element row. Each MR element row is composed of a plurality of MR elements connected in series. Each MR element has a magnetization pinned layer. The plurality of MR elements forming each MR element row include one or more pairs of MR elements. Magnetization directions of the magnetization pinned layers in two MR elements making up a pair form a predetermined relative angle other than 0° and 180°.
    Type: Application
    Filed: August 8, 2011
    Publication date: May 17, 2012
    Applicant: TDK CORPORATION
    Inventors: Yosuke KOMASAKI, Hiraku HIRABAYASHI, Shunji SARUKI
  • Publication number: 20120095712
    Abstract: An angle detection unit including first to third arithmetic units receives first and second signals that are associated with intensities of components of a rotating magnetic field in mutually different directions. The first arithmetic unit generates a sum of squares signal made up of the sum of squares of the first and second signals. Based on the sum of squares signal, the second arithmetic unit calculates a first error component estimate which is an estimated value of a first error component included in the first signal and a second error component estimate which is an estimated value of a second error component included in the second signal. The third arithmetic unit generates a first corrected signal by subtracting the first error component estimate from the first signal, generates a second corrected signal by subtracting the second error component estimate from the second signal, and calculates a detected angle value based on the first and second corrected signals.
    Type: Application
    Filed: July 21, 2011
    Publication date: April 19, 2012
    Applicant: TDK CORPORATION
    Inventors: Yosuke KOMASAKI, Hiraku HIRABAYASHI
  • Publication number: 20120053865
    Abstract: A first detection unit has first and second detection circuits. A second detection unit has third and fourth detection circuits. Output signals of the second and fourth detection circuits differ from output signals of the first and third detection circuits in phase, respectively, by an odd number of times ¼ the signal period. The output signal of the third detection circuit differs from the output signal of the first detection circuit in phase by an integer multiple of ? the signal period other than an integer multiple of ½ the signal period. A rotating field sensor generates a first signal based on the output signals of the first and third detection circuits, generates a second signal based on the output signals of the second and fourth detection circuits, and calculates a detected angle value based on the first and second signals.
    Type: Application
    Filed: July 5, 2011
    Publication date: March 1, 2012
    Applicant: TDK CORPORATION
    Inventors: Shunji SARUKI, Hiraku HIRABAYASHI, Yosuke KOMASAKI