Patents by Inventor Youming Qin

Youming Qin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210199777
    Abstract: A sensing device includes a stationary portion and a rotating portion. The rotating portion is spaced apart from the stationary portion by a gap and is configured to rotate relative to the stationary portion. The rotating portion includes one or more sensors that generate data. A communication interface in the rotating portion is configured to encode the data with error correction codes to provide encoded data, modulate a radio frequency (RF) signal that includes a plurality of sub-carriers with the encoded data to provide a data-modulated RF signal (e.g., an orthogonal frequency-division multiplexing (OFDM) signal), and transmit the data-modulated RF signal to the stationary portion via a wireless data transformer. The wireless data transformer includes a first conductive structure in the stationary portion and a second conductive structure in the rotating portion. The first and second conductive structures are inductively coupled together across the gap.
    Type: Application
    Filed: November 24, 2020
    Publication date: July 1, 2021
    Inventors: Youming Qin, Paul Karplus
  • Patent number: 10476445
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C. M. Pham, Jayesh Nath, Ying Shen
  • Patent number: 10090971
    Abstract: Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: October 2, 2018
    Assignee: Aviat U.S., Inc.
    Inventors: Emerick Vann, Yen-Fang Chao, Youming Qin, Roland Matian
  • Publication number: 20180198573
    Abstract: Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
    Type: Application
    Filed: November 7, 2017
    Publication date: July 12, 2018
    Applicant: Aviat U.S., Inc.
    Inventors: Emerick Vann, Yen-Fang Chao, Youming Qin, Roland Matian
  • Publication number: 20180191311
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Applicant: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C.M. Pham, Jayesh Nath, Ying Shen
  • Patent number: 9906194
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: February 27, 2018
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C. M. Pham, Jayesh Nath, Ying Shen
  • Patent number: 9813198
    Abstract: Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: November 7, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Emerick Vann, Yen-Fang Chao, Youming Qin, Roland Matian
  • Patent number: 9660716
    Abstract: According to various embodiments, systems and methods are provided for improving signal quality and signal reliability over wireless communication using polarization diversity. Some embodiments use polarization diversity on a wireless channel to address and compensate for fading conditions such as non-frequency selective fading (also referred to as power fading, attenuation fading, and flat fading) and frequency selective fading (also referred to as multipath fading and dispersive fading). For example, some embodiments utilize a horizontal signal and a vertical signal on the same wireless channel when wirelessly communicating data between a transmitter and a receiver to address a fading condition.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: May 23, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Youming Qin, Frank Matsumoto
  • Patent number: 9531412
    Abstract: Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: December 27, 2016
    Assignee: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen, Frank Matsumoto, Youming Qin, David C. M. Pham
  • Publication number: 20160261240
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Applicant: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C.M. Pham, Jayesh Nath, Ying Shen
  • Publication number: 20160233945
    Abstract: According to various embodiments, systems and methods are provided for improving signal quality and signal reliability over wireless communication using polarization diversity. Some embodiments use polarization diversity on a wireless channel to address and compensate for fading conditions such as non-frequency selective fading (also referred to as power fading, attenuation fading, and flat fading) and frequency selective fading (also referred to as multipath fading and dispersive fading). For example, some embodiments utilize a horizontal signal and a vertical signal on the same wireless channel when wirelessly communicating data between a transmitter and a receiver to address a fading condition.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 11, 2016
    Applicant: Aviat U.S., Inc.
    Inventors: Youming Qin, Frank Matsumoto
  • Patent number: 9369094
    Abstract: An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 14, 2016
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, David C. M. Pham
  • Patent number: 9337965
    Abstract: Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 10, 2016
    Assignee: Aviat U.S., Inc.
    Inventors: Emerick Vann, Yen-Fang Chao, Youming Qin, Roland Matian
  • Patent number: 9331771
    Abstract: According to various embodiments, systems and methods are provided for improving signal quality and signal reliability over wireless communication using polarization diversity. Some embodiments use polarization diversity on a wireless channel to address and compensate for fading conditions such as non-frequency selective fading (also referred to as power fading, attenuation fading, and flat fading) and frequency selective fading (also referred to as multipath fading and dispersive fading). For example, some embodiments utilize a horizontal signal and a vertical signal on the same wireless channel when wirelessly communicating data between a transmitter and a receiver to address a fading condition.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: May 3, 2016
    Assignee: Aviat U.S., Inc.
    Inventors: Youming Qin, Frank Matsumoto
  • Patent number: 9160284
    Abstract: Various embodiments described herein provide systems and methods for improved performance for power amplifiers, particularly GaN power amplifiers. According to some embodiments, a power amplifier (e.g., GaN power amplifier) utilizes adaptive predistortion and adaptive closed-loop control of the drain current of the power amplifier to achieve improved power amplifier performance.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: October 13, 2015
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin, Cuong Nguyen, Andres Goytia
  • Patent number: 9154085
    Abstract: An exemplary system comprises a linearizer, a power amplifier, and a feedback block. The linearizer may be configured to use a predistortion control signal to add predistortion to a receive signal to generate a predistorted signal. The power amplifier may be configured to amplify power of the predistorted signal to generate a first amplified signal. The power amplifier may also add high side and low side amplifier distortion to the predistorted signal. The high side and low side amplifier distortion may cancel at least a portion of the predistortion. The feedback block may be configured to capture a feedback signal based on a previous amplified signal from the power amplifier, to determine high side and low side distortion of the captured feedback signal, and to generate the predistortion control signal based on the determined high side and low side distortion.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: October 6, 2015
    Assignee: Aviat U.S., Inc.
    Inventors: Frank Matsumoto, Youming Qin
  • Patent number: 9143098
    Abstract: Various embodiments described herein provide systems and methods for improved performance for power amplifiers, particularly GaN power amplifiers. According to some embodiments, a power amplifier (e.g., GaN power amplifier) utilizes an adaptive closed loop control of the drain current of the power amplifier to achieve improved performance for the power amplifier.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: September 22, 2015
    Assignee: Aviat U.S., Inc.
    Inventors: Youming Qin, Frank Matsumoto, Andres Goytia, Cuong Nguyen
  • Publication number: 20150236732
    Abstract: Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.
    Type: Application
    Filed: May 5, 2015
    Publication date: August 20, 2015
    Applicant: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen, Frank Matsumoto, Youming Qin, David C.M. Pham
  • Patent number: 9113554
    Abstract: One design aspect in electronic systems, such as communication systems, is noise suppression. More particularly, this relates to microphonics suppression in high-speed communication systems, such as microwave wireless radio systems. The present invention contemplates system design for substantially eliminating microphonic behavior created by mechanical stimulus such as vibrations and the drum effect. A preferred approach includes isolating the motherboard from its mounting harnesses (mechanical interconnection) and adding an echo damping and shock absorption pad to the underside of the enclosure cover to stiffen the enclosure cover while maintaining its light weight. Preferably also, this approach isolates the entire motherboard rather than a particular component. A design using this approach is particularly useful in an outdoor unit (ODU) of a split-mount microwave radio system.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: August 18, 2015
    Assignee: Aviat U.S., Inc.
    Inventors: Youming Qin, Frank S. Matsumoto, Eric Tiongson
  • Publication number: 20150215084
    Abstract: Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
    Type: Application
    Filed: April 6, 2015
    Publication date: July 30, 2015
    Applicant: Aviat U.S., Inc.
    Inventors: Emerick Vann, Yen-Fang Chao, Youming Qin, Roland Matian