Patents by Inventor Young-Ahn Leem

Young-Ahn Leem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10852617
    Abstract: A light comb generating device according to a disclosed embodiment includes a light source for generating light in a reference wavelength band and outputting the generated light, and an optical comb generator for generating a light comb having a reference comb interval from the output light, wherein the light source changes a wavelength of the output light as much as a reference frequency interval for every reference time interval, the light comb is generated within a wavelength range of the reference frequency interval, and the reference wavelength band may be at least about 3 ?m and no greater than about 30 ?m.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 1, 2020
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Kisoo Kim, Sung Bock Kim, Young Ahn Leem
  • Publication number: 20190278151
    Abstract: A light comb generating device according to a disclosed embodiment includes a light source for generating light in a reference wavelength band and outputting the generated light, and an optical comb generator for generating a light comb having a reference comb interval from the output light, wherein the light source changes a wavelength of the output light as much as a reference frequency interval for every reference time interval, the light comb is generated within a wavelength range of the reference frequency interval, and the reference wavelength band may be at least about 3 ?m and no greater than about 30 ?m.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Inventors: Oh Kee KWON, Kisoo KIM, Sung Bock KIM, Young Ahn LEEM
  • Patent number: 9927484
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 27, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Young Tak Han, Ki Soo Kim, Su Hwan Oh, Chul Wook Lee, Young Ahn Leem
  • Publication number: 20170023635
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 26, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Young Tak HAN, Ki Soo KIM, Su Hwan OH, Chul Wook LEE, Young Ahn LEEM
  • Publication number: 20160013621
    Abstract: Provided is a method of manufacturing a distributed feedback laser diode array (DFB-LDA) including: forming active layers corresponding to a plurality of channels using electron beam lithography; forming a plurality of mask patterns between the active layers; and growing the active layers using electron beam lithography, wherein the opening widths of the plurality of mask patterns corresponding to the plurality of channels are different from one another.
    Type: Application
    Filed: January 29, 2015
    Publication date: January 14, 2016
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young Ahn LEEM, Kisoo KIM, Oh Kee KWON, Young-Tak Han
  • Patent number: 9036969
    Abstract: Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 19, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Publication number: 20150110144
    Abstract: A distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 23, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee KWON, Su Hwan OH, Young Ahn LEEM, O-Kyun KWON, Young-Tak HAN, Yongsoon BAEK, Yun C. CHUNG
  • Patent number: 8937980
    Abstract: Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Su Hwan Oh, Young Ahn Leem, O-Kyun Kwon, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Publication number: 20140334512
    Abstract: Provided is a distributed feedback-laser diode (DFB-LD) and manufacturing method thereof. The DFB-LD includes a substrate; a lower clad layer having a grating on the substrate; an active waveguide extended in a first direction on the lower clad layer; an upper clad layer on the active waveguide; a signal pad on the upper clad layer; and at least one ground pad spaced apart from the active waveguide, the upper clad layer, and the signal pad in a second direction crossing the first direction, the at least one ground pad being coupled to the lower clad layer.
    Type: Application
    Filed: March 5, 2014
    Publication date: November 13, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee KWON, Young-Tak HAN, Chul-Wook LEE, Young Ahn LEEM
  • Patent number: 8853633
    Abstract: Provided are a THz-wave generation/detection module and a device including the same, which increase heating efficiency and are miniaturized. The module includes a photomixer chip, a lens, a PCB, and a package. The photomixer chip includes an active layer, an antenna, and a plurality of electrode pads. The lens is disposed on the photomixer chip. The PCB includes a plurality of solder balls connected to the electrode pads, under the photomixer chip. The package surrounds a bottom and side of the PCB, and dissipates heating of the active layer, which is transferred from the electrode pad of the photomixer chip to the PCB, to outside.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: October 7, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang-Pil Han, Kyung Hyun Park, Hyunsung Ko, Namje Kim, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem
  • Patent number: 8837537
    Abstract: A high-efficiency laser diode is provided. Since a ?/4 phase-shifted distributed feedback (DFB) laser diode has a great coupling coefficient, mode stability is poor due to spatial hole burning when multiplication of the coupling coefficient by length of a resonator is equal to or greater than 2. In the inventive concept, a region capable of controlling spatial hole burning is inserted into a semiconductor laser diode structure. Thus, an ultrahigh-speed pulse laser diode having a repetition rate in the band ranging from 100 GHz to 300 GHz is obtained. In addition, a single-mode laser diode with improved energy use efficiency is implemented by changing the configuration of a laser diode.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Young Ahn Leem
  • Patent number: 8774243
    Abstract: Provided are a dual mode semiconductor laser and a terahertz wave apparatus using the same. The dual mode semiconductor laser includes a distributed feedback laser structure section including a first diffraction grating on a substrate and a distributed Bragg reflector laser structure section including a second diffraction grating on the substrate. A first wavelength oscillated by the distributed feedback laser structure section and a second wavelength oscillated by the distributed Bragg reflector laser structure section are different from each other, and the distributed feedback laser structure section and the distributed Bragg reflector laser structure section share the same gain medium with each other.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Namje Kim, Kyung Hyun Park, Young Ahn Leem, Chul-Wook Lee, Sang-Pil Han, Dong-Hun Lee, Min Yong Jeon
  • Patent number: 8644714
    Abstract: Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 4, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh-Kee Kwon, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem, Yongsoon Baek
  • Patent number: 8599893
    Abstract: Disclosed is a terahertz wave generator which includes a dual mode semiconductor laser device configured to generate at least two laser lights having different wavelengths and to beat the generated laser lights; and a photo mixer formed on the same chip as the dual mode semiconductor laser device and to generate a continuous terahertz wave when excited by the beat laser light.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: December 3, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Namje Kim, Kyung Hyun Park, Young Ahn Leem, Hyunsung Ko, Sang-Pil Han, Chul-Wook Lee, Dong-Hun Lee
  • Publication number: 20130287054
    Abstract: Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Application
    Filed: September 13, 2012
    Publication date: October 31, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Su Hwan Oh, Young Ahn Leem, O-Kyun Kwon, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Publication number: 20130266263
    Abstract: Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 10, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Chul-Wook LEE, Dong-Hun LEE, Young Ahn LEEM, Young-Tak HAN, Yongsoon BAEK, Yun C. CHUNG
  • Publication number: 20130148975
    Abstract: Provided is a multichannel transmitter optical module which includes a plurality of light source units configured to generate light, a plurality of an electro-absorption modulators (EAMs) configured to modulate the generated light to an optical signal through a radio frequency (RF) signal, a plurality of RF transmission lines configured to apply the RF signal to the EAMs, and a combiner configured to combine the modulated optical signal. The RF transmission lines are connected to the EAMs in a traveling wave (TW) electrode manner. The multichannel transmitter optical module has alleviated crosstalk and is compactly integrated to have a small size.
    Type: Application
    Filed: August 14, 2012
    Publication date: June 13, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Young-Tak Han, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem, Jang Uk Shin, Sang Ho Park, Yun C. Chung, Yongsoon Baek
  • Publication number: 20130148675
    Abstract: A high-efficiency laser diode is provided. Since a ?/4 phase-shifted distributed feedback (DFB) laser diode has a great coupling coefficient, mode stability is poor due to spatial hole burning when multiplication of the coupling coefficient by length of a resonator is equal to or greater than 2. In the inventive concept, a region capable of controlling spatial hole burning is inserted into a semiconductor laser diode structure. Thus, an ultrahigh-speed pulse laser diode having a repetition rate in the band ranging from 100 GHz to 300 GHz is obtained. In addition, a single-mode laser diode with improved energy use efficiency is implemented by changing the configuration of a laser diode.
    Type: Application
    Filed: September 13, 2012
    Publication date: June 13, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Young Ahn LEEM
  • Publication number: 20130003771
    Abstract: Provided are a distributed feedback laser diode and a manufacturing method thereof. The distributed feedback laser diode includes a first area having a first grating layer disposed in a longitudinal direction, a second area disposed adjacent to the first area and having a second grating layer disposed in the longitudinal direction, and an active layer disposed over the first and second areas. Coupling coefficients of the first and second grating layers are made different in the first and second areas by a selective area growth method. The distributed feedback laser diode includes grating layers each having an asymmetric coefficient and is implemented within an optimal range capable of obtaining both a high front facet output and stable single mode characteristics. Thus, high manufacturing yield and low manufacturing cost can be achieved.
    Type: Application
    Filed: May 29, 2012
    Publication date: January 3, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Young Ahn Leem, Dong-Hun Lee, Chul-Wook Lee, Yongsoon Baek, Yun C. Chung
  • Patent number: 8346026
    Abstract: Provided are a photoelectric device using a PN diode and a silicon integrated circuit (IC) including the photoelectric device. The photoelectric device includes: a substrate; and an optical waveguide formed as a PN diode on the substrate, wherein a junction interface of the PN diode is formed in a direction in which light advances; and an electrode applying a reverse voltage to the PN diode, wherein N-type and P-type semiconductors of the PN diode are doped at high concentrations and the doping concentration of the N-type semiconductor is higher than or equal to that of the P-type semiconductor.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: January 1, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong-Woo Park, Gyungock Kim, Young-Ahn Leem, Hyun-Soo Kim, Bongki Mheen