Patents by Inventor Yu-Gyun Shin

Yu-Gyun Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9543300
    Abstract: Provided are a CMOS transistor, a semiconductor device having the transistor, and a semiconductor module having the device. The CMOS transistor may include first and second interconnection structures respectively disposed in first and second regions of a semiconductor substrate. The first and second regions of the semiconductor substrate may have different conductivity types. The first and second interconnection structures may be disposed on the semiconductor substrate. The first interconnection structure may have a different stacked structure from the second interconnection structure. The CMOS transistor may be disposed in the semiconductor device. The semiconductor device may be disposed in the semiconductor module.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: January 10, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Lan Lee, Hong-Bae Park, Sang-Jin Hyun, Yu-Gyun Shin, Sug-Hun Hong, Hoon-Joo Na, Hyung-Seok Hong
  • Publication number: 20160204108
    Abstract: Provided are a CMOS transistor, a semiconductor device having the transistor, and a semiconductor module having the device. The CMOS transistor may include first and second interconnection structures respectively disposed in first and second regions of a semiconductor substrate. The first and second regions of the semiconductor substrate may have different conductivity types. The first and second interconnection structures may be disposed on the semiconductor substrate. The first interconnection structure may have a different stacked structure from the second interconnection structure. The CMOS transistor may be disposed in the semiconductor device. The semiconductor device may be disposed in the semiconductor module.
    Type: Application
    Filed: February 26, 2016
    Publication date: July 14, 2016
    Inventors: Hye-Lan Lee, Hong-Bae Park, Sang-Jin Hyun, Yu-Gyun Shin, Sug-Hun Hong, Hoon-Joo Na, Hyung-Seok Hong
  • Patent number: 9287199
    Abstract: Provided are a CMOS transistor, a semiconductor device having the transistor, and a semiconductor module having the device. The CMOS transistor may include first and second interconnection structures respectively disposed in first and second regions of a semiconductor substrate. The first and second regions of the semiconductor substrate may have different conductivity types. The first and second interconnection structures may be disposed on the semiconductor substrate. The first interconnection structure may have a different stacked structure from the second interconnection structure. The CMOS transistor may be disposed in the semiconductor device. The semiconductor device may be disposed in the semiconductor module.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 15, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Lan Lee, Hong-Bae Park, Sang-Jin Hyun, Yu-Gyun Shin, Sug-Hun Hong, Hoon-Joo Na, Hyung-Seok Hong
  • Patent number: 9236313
    Abstract: A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 12, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoon-joo Na, Yu-gyun Shin, Hong-bae Park, Hag-ju Cho, Sug-hun Hong, Sang-jin Hyun, Hyung-seok Hong
  • Patent number: 9190495
    Abstract: A recessed channel array transistor may include a substrate, a gate oxide layer, a gate electrode and source/drain regions. The substrate may have an active region and an isolation region. A recess may be formed in the active region. The gate oxide layer may be formed on the recess and the substrate. The gate oxide layer may include a first portion on an intersection between a side end of the recess and a sidewall of the active region and a second portion on a side surface of the recess. The first portion may include a thickness greater than about 70% of a thickness of the second portion. The gate electrode may be formed on the gate oxide layer. The source/drain regions may be formed in the substrate. Thus, the recessed channel array transistor may have a decreased leakage current and an increased on-current.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: November 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Publication number: 20150093888
    Abstract: A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Hoon-joo Na, Yu-gyun Shin, Hong-bae Park, Hag-ju Cho, Sug-hun Hong, Sang-jin Hyun, Hyung-seok Hong
  • Patent number: 8932922
    Abstract: A method of fabricating a semiconductor device having a dual gate allows for the gates to have a wide variety of threshold voltages. The method includes forming a gate insulation layer, a first capping layer, and a barrier layer in the foregoing sequence across a first region and a second region on a substrate, exposing the gate insulation layer on the first region by removing the first capping layer and the barrier layer from the first region, forming a second capping layer on the gate insulation layer in the first region and on the barrier layer in the second region, and thermally processing the substrate on which the second capping layer is formed. The thermal processing causes material of the second capping layer to spread into the gate insulation layer in the first region and material of the first capping layer to spread into the gate insulation layer in the second region. Thus, devices having different threshold voltages can be formed in the first and second regions.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: January 13, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoon-joo Na, Yu-gyun Shin, Hong-bae Park, Hag-ju Cho, Sug-hun Hong, Sang-jin Hyun, Hyung-seok Hong
  • Patent number: 8691649
    Abstract: In methods of manufacturing a recessed channel array transistor, a recess may be formed in an active region of a substrate. A plasma oxidation process may be performed on the substrate to form a preliminary gate oxide layer on an inner surface of the recess and an upper surface of the substrate. Moistures may be absorbed in a surface of the preliminary gate oxide layer to form a gate oxide layer. A gate electrode may be formed on the gate oxide layer to fill up the recess. Source/drain regions may be formed in an upper surface of the substrate at both sides of the gate electrode. Thus, the oxide layer may have a uniform thickness distribution and a dense structure.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tai-Su Park, Jung-Sup Oh, Gun-Joong Lee, Jung-Soo An, Dong-Kyu Lee, Jung-Geun Park, Jeong-Do Ryu, Dong-Chan Kim, Seong-Hoon Jeong, Si-Young Choi, Yu-Gyun Shin, Jong-Ryeol Yoo, Jong-Hoon Kang
  • Patent number: 8691642
    Abstract: A method of fabricating a semiconductor device includes forming gate structures on PMOS and NMOS transistor regions of the semiconductor substrate, forming epitaxial blocking layers on source/drain regions of PMOS and NMOS transistor regions using a nitridation process, then selectively removing one of the epitaxial blocking layers, and using a SEG process to form an epitaxial layer on respective source/drain regions while shielding the other source/drain regions with a remaining epitaxial blocking layer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Chan Lee, Seung-Jae Lee, Yu-Gyun Shin, Dae-Young Kwak, Byung-Suk Jung
  • Patent number: 8604551
    Abstract: A semiconductor device includes a substrate, a first region and a second region. Each of the first region and second region includes a trench, an epitaxial layer including a source/drain having a first part and a second part, the first part extending from a top surface of the substrate to a top surface of the source/drain and the second part extending from the top surface of the substrate to a bottom surface of the source/drain in the trench. The cross-sectional shape of the first part of the source/drain of the first region is the same as the cross-sectional shape of the first part of the source/drain of the second region. The cross-sectional shape of the second past of the source/drain of the find region is different from the cross-sectional shape of the second part of the source/drain of the second region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Woo Hyun, Yu-Gyun Shin, Sun-Ghil Lee, Hong-Sik Yoon
  • Patent number: 8598024
    Abstract: A method of fabricating a metal silicide layer includes forming a metal layer on a substrate, and forming a pre-metal silicide layer by reacting the substrate with the metal layer by performing a first annealing process on the substrate. The method also includes implanting silicon into the substrate using a gas cluster ion beam (GCIB) process, and changing the pre-metal silicide layer into a metal silicide layer by performing a second annealing process on the substrate.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Chul-Sung Kim, Sang-Woo Lee, Yu-Gyun Shin
  • Patent number: 8530303
    Abstract: A method of fabricating a semiconductor includes providing a substrate having a first region and a second region defined therein, forming a first gate and a first source and drain region in the first region and forming a second gate and a second source and drain region in the second region, forming an epitaxial layer in the second source and drain region, forming a first metal silicide layer in the first source and drain region, forming an interlayer dielectric layer on the first region and the second region, forming a plurality of contact holes exposing the first metal silicide layer and the epitaxial layer while penetrating the interlayer dielectric layer, forming a second metal silicide layer in the exposed epitaxial layer, and forming a plurality of contacts contacting the first and second metal silicide layers by filling the plurality of contact holes.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Chul-Sung Kim, Yu-Gyun Shin, Dae-Yong Kim, Joon-Gon Lee, Kwang-Young Lee
  • Publication number: 20130228870
    Abstract: A semiconductor device includes a substrate, a first region and a second region. Each of the first region and second region includes a trench, an epitaxial layer including a source/drain having a first part and a second part, the first part extending from a top surface of the substrate to a top surface of the source/drain and the second part extending from the top surface of the substrate to a bottom surface of the source/drain in the trench. The cross-sectional shape of the first part of the source/drain of the first region is the same as the cross-sectional shape of the first part of the source/drain of the second region. The cross-sectional shape of the second part of the source/drain of the first region is different from the cross-sectional shape of the second part of the source/drain of the second region.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 5, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-Woo HYUN, Yu-Gyun SHIN, Sun-Ghil LEE, Hong-Sik YOON
  • Patent number: 8501611
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Do Ryu, Si-Young Choi, Yu-Gyun Shin, Tai-Su Park, Dong-Chan Kim, Jong-Ryeol Yoo, Seong-Hoon Jeong, Jong-Hoon Kang
  • Patent number: 8481416
    Abstract: A semiconductor device includes an inorganic insulating layer on a semiconductor substrate, a contact plug that extends through the inorganic insulating layer to contact the semiconductor substrate and a stress buffer spacer disposed between the node contact plug and the inorganic insulating layer. The device further includes a thin-film transistor (TFT) disposed on the inorganic insulating layer and having a source/drain region extending along the inorganic insulating layer to contact the contact plug. The device may further include an etch stop layer interposed between the inorganic insulating layer and the semiconductor substrate.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee, Sun-Ghil Lee, In-Soo Jung, Young-Eun Lee, Deok-Hyung Lee
  • Patent number: 8470703
    Abstract: Methods of forming a semiconductor device include providing a substrate having an area including a source and a drain region of a transistor. A nickel (Ni) metal film is formed on the substrate area including the source and the drain region. A first heat-treatment process is performed including heating the substrate including the metal film from a first temperature to a second temperature at a first ramping rate and holding the substrate including the metal film at the second temperature for a first period of time. A second heat-treatment process is then performed including heating the substrate including the metal film from a third temperature to a fourth temperature at a second ramping rate and holding the substrate at the fourth temperature for a second period of time. The fourth temperature is different from the second temperature and the second period of time is different from the first period of time.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Hak Lee, Yu-Gyun Shin, Sang-Woo Lee, Sun-Ghil Lee, Jin-Bum Kim, Joon-Gon Lee
  • Patent number: 8415224
    Abstract: A method of fabricating a semiconductor device and a semiconductor device are provided. The method includes method of fabricating a semiconductor device including providing a semiconductor substrate having a first semiconductor device region and a second semiconductor device region defined therein, forming a first gate structure in the first semiconductor device region, forming a second gate structure in the second semiconductor device region, forming a first trench adjacent to a first side of the first gate structure, forming a second trench adjacent to a first side of the second gate structure, and forming a first semiconductor pattern in the first trench and forming a second semiconductor pattern in the second trench, wherein the first and second trenches have different cross-sectional shapes from each other.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: April 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Woo Hyun, Yu-Gyun Shin, Sun-Ghil Lee, Hong-Sik Yoon
  • Patent number: 8409947
    Abstract: Provided is a simplified method of manufacturing a semiconductor device having a stress creating layer. A first conductive first impurity region is formed on a semiconductor substrate on both sides of a first gate of a first area of the semiconductor substrate, and a second conductive second impurity region is formed on the semiconductor substrate on both sides of a second gate of a second area. First and second spacers are formed on sidewalls of the first and second gates, respectively. First and second semiconductor layers are formed in portions of the semiconductor substrate so as to contact the first and second impurity regions, respectively. The second semiconductor layer is removed. First and second barrier layers are formed in the first and second contact holes of the insulation layer, respectively.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: April 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-bum Kim, Wook-je Kim, Yu-gyun Shin, Kwan-heum Lee, Sun-ghil Lee
  • Patent number: 8361860
    Abstract: A method of manufacturing a semiconductor device may include forming a first interlayer insulation layer on a substrate including at least one gate structure formed thereon, the substrate having a plurality of source/drain regions formed on both sides of the at least one gate structure, forming at least one buried contact plug on at least one of the plurality of source/drain regions and in the first interlayer insulation layer, forming a second interlayer insulation layer on the first interlayer insulation layer and the at least one buried contact plug, exposing the at least one buried contact plug in the second interlayer insulation layer by forming at least one contact hole, implanting ions in the at least one contact hole in order to create an amorphous upper portion of the at least one buried contact plug, depositing a lower electrode layer on the second interlayer insulation layer and the at least one contact hole, and forming a metal silicide layer in the amorphous upper portion of the at least one buri
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-bum Kim, Wook-je Kim, Kwan-heum Lee, Yu-gyun Shin, Sun-ghil Lee
  • Publication number: 20120282769
    Abstract: Methods of forming integrated circuit devices include forming an electrically conductive layer containing silicon on a substrate and forming a mask pattern on the electrically conductive layer. The electrically conductive layer is selectively etched to define a first sidewall thereon, using the mask pattern as an etching mask. The first sidewall of the electrically conductive layer may be exposed to a nitrogen plasma to thereby form a first silicon nitride layer on the first sidewall. The electrically conductive layer is then selectively etched again to expose a second sidewall thereon that is free of the first silicon nitride layer. The mask pattern may be used again as an etching mask during this second step of selectively etching the electrically conductive layer.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Inventors: Jeong-Do Ryu, Si-Young CHOI, Yu-Gyun SHIN, Tai-Su PARK, Dong-Chan KIM, Jong-Ryeol YOO, Seong-Hoon JEONG, Jong-Hoon KANG