Patents by Inventor Yu-Hwa Chang

Yu-Hwa Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11549072
    Abstract: The invention relates to an improved system and method for relief of hot, high pressure, fouling fluid from the 1st Stage Reactor and the ISS in case of an unintended overpressure situation while allowing the quick establishing of normal fluid flow path once the overpressure situation has been corrected. This allows for rapid cooling of all subsequent reactor stages while minimizing VGO slop generation that needs reprocessing.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: January 10, 2023
    Assignee: Axens
    Inventors: Trushit Oza, Yu-Hwa Chang
  • Patent number: 9790440
    Abstract: Methods and systems for hydrocracking a heavy oil feedstock include using a colloidal or molecular catalyst (e.g., molybdenum sulfide) and provide for concentration of the colloidal or molecular catalyst within the lower quality materials requiring additional hydrocracking in one or more downstream reactors. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 17, 2017
    Assignee: HEADWATERS TECHNOLOGY INNOVATION GROUP, INC.
    Inventor: Yu-Hwa Chang
  • Patent number: 8557105
    Abstract: Methods for hydrocracking a heavy hydrocarbon feedstock (e.g., heavy oil and/or coal resid) employ a catalyst composed of well dispersed metal sulfide catalyst particles (e.g., colloidally or molecularly dispersed catalyst particles, such as molybdenum sulfide), which provide an increased concentration of metal sulfide catalyst particles within lower quality materials requiring additional hydrocracking. In addition to increased metal sulfide catalyst concentration, the systems and methods provide increased reactor throughput, increased reaction rate, and higher conversion of asphaltenes and lower quality materials. Increased conversion of asphaltenes and lower quality materials also reduces equipment fouling, enables processing of a wider range of lower quality feedstocks, and leads to more efficient use of a supported catalyst if used in combination with the well dispersed metal sulfide catalyst particles.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 15, 2013
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Roger K. Lott, Yu-Hwa Chang
  • Publication number: 20130075304
    Abstract: Methods and systems for hydrocracking a heavy oil feedstock include using a colloidal or molecular catalyst (e.g., molybdenum sulfide) and provide for concentration of the colloidal or molecular catalyst within the lower quality materials requiring additional hydrocracking in one or more downstream reactors. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Inventor: Yu-Hwa Chang
  • Patent number: 8309041
    Abstract: Systems for hydrocracking a heavy oil feedstock employ a colloidally or molecularly dispersed catalyst (e.g., molybdenum sulfide) which provide for concentration of the colloidally dispersed catalyst within the lower quality materials requiring additional hydrocracking. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: November 13, 2012
    Assignee: Headwaters Heavy Oil, LLC
    Inventors: Roger K. Lott, Yu-Hwa Chang
  • Publication number: 20120009094
    Abstract: Systems for hydrocracking a heavy oil feedstock employ a colloidally or molecularly dispersed catalyst (e.g., molybdenum sulfide) which provide for concentration of the colloidally dispersed catalyst within the lower quality materials requiring additional hydrocracking. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: Roger K. Lott, Yu-Hwa Chang
  • Patent number: 8034232
    Abstract: Methods and systems for hydrocracking a heavy oil feedstock using, a colloidally or molecularly dispersed catalyst (e.g., molybdenum sulfide) which provide for concentration of the colloidally dispersed catalyst within the lower quality materials requiring additional hydrocracking. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 11, 2011
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Roger K. Lott, Yu-Hwa Chang
  • Publication number: 20090107881
    Abstract: Methods and systems for hydrocracking a heavy oil feedstock using, a colloidally or molecularly dispersed catalyst (e.g., molybdenum sulfide) which provide for concentration of the colloidally dispersed catalyst within the lower quality materials requiring additional hydrocracking. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Robert K. Lott, Yu-Hwa Chang