Patents by Inventor Yu Morimoto

Yu Morimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060280985
    Abstract: Disclosed herein is a solid polymer electrolyte wherein protons of cation exchange groups contained in a perfluorinated electrolyte are partially replaced by metal ions. The metal ion is at least one metal ion selected from vanadium (V), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), iron (Fe), ruthenium (Ru), nickel (Ni), palladium (Pd), platinum (Pt), silver (Ag), cerium (Ce), neodymium (Nd), praseodymium (Pr), samarium (Sm), cobalt (Co), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), and erbium (Er) ions. Further disclosed is a solid polymer fuel cell using the solid polymer electrolyte.
    Type: Application
    Filed: May 26, 2006
    Publication date: December 14, 2006
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Eishiro Toyoda, Tomohiro Takeshita, Fusayoshi Miura, Masaya Kawasumi, Naoki Hasegawa, Yu Morimoto, Manabu Kato, Kazutaka Kimura
  • Publication number: 20060199063
    Abstract: To improve oxidation resistance of an electrolyte membrane and durability thereof by a low-cost method, thereby improving durability of a polymer electrolyte fuel cell. According to the present invention, in the polymer electrolyte fuel cell having a membrane-electrode assembly including a polymer electrolyte membrane and electrodes bonded to both sides of the polymer electrolyte membrane, phosphate containing at least one metallic element selected from a rare earth element, Ti, Fe, Al and Bi is fixed to at least one of the polymer electrolyte membrane and the electrodes.
    Type: Application
    Filed: February 17, 2006
    Publication date: September 7, 2006
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Fusayoshi Miura, Tomohiro Takeshita, Tatsuya Hatanaka, Yu Morimoto, Masafumi Kobayashi, Manabu Kato, Norimitsu Takeuchi
  • Patent number: 7060735
    Abstract: A Polymer Electrolyte Membrane is formed by hot air drying of a membrane formed with an acidic main-polymer having proton conductivity and capability of forming an electrolyte membrane (S12), and then immersing it into a basic polymer solution to impregnate the membrane with the basic polymer (S14). The basic polymer is introduced in a large quantity into a site acting as a proton conduction pass of the main-polymer to take charge of the proton conduction. Since in the Polymer Electrolyte Membrane, a base polymer takes charge of proton conduction as compared with the case where proton takes charge of the proton conduction as a hydrate, the base polymer shows favorable proton conductivity even in a low humidity state at an elevated temperature exceeding boiling point of water.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: June 13, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takumi Taniguchi, Mitsuru Nakano, Masaya Kawasumi, Yu Morimoto, Naoki Hasegawa
  • Patent number: 6864011
    Abstract: A fuel-cell electrode and a method of manufacturing the fuel-cell electrode achieves a high catalyst utilization ratio and makes it possible to obtain higher output characteristics with a smaller amount of catalyst. The fuel-cell electrode includes a catalytic layer composed of an ion conductive substance, an electron conductive substance and catalytic activation substances. The catalytic activation substances are electrolytically deposited on the electron conductive substance.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: March 8, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuya Kawahara, Seiji Mizuno, Takahiko Asaoka, Yu Morimoto, Kazuo Kawahara
  • Patent number: 6827986
    Abstract: The present invention is a grafted polymer electrolyte membrane prepared by first preparing a precursor membrane comprising a polymer which is capable of being graft polymerized, exposing the surface of the precursor membrane to a plasma in an oxidative atmosphere, then graft-polymerizing a side chain polymer to the plasma treated precursor membrane and introducing a proton conductive functional group to the side chain. The resulting grafted polymer electrolyte membrane has excellent stability and performance when used in a proton-exchange membrane fuel cell or for electrolysis of water.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: December 7, 2004
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Michio Asukabe, Michiaki Kato, Takumi Taniguchi, Yu Morimoto, Masaya Kawasumi
  • Patent number: 6713207
    Abstract: Disclosed is a membrane electrode assembly obtained by bonding electrodes to both surfaces of a solid polymer electrolyte membrane suitably for use in a solid polymer fuel cell. In order to maintain not only the solid polymer electrolyte but also the electrode in appropriate wet states, the catalyst layer of the assembly contains a metalloxane polymer in the intra-catalyst-layer electrolyte including an electrode catalyst preferably in an amount of 0.5 to 50 wt % of the total weight of the intra-catalyst-layer electrolyte and the metalloxane polymer contained therein exclusive of the electrode catalyst.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: March 30, 2004
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kyoko Tsusaka, Masaya Kawasumi, Yu Morimoto
  • Publication number: 20030175569
    Abstract: The membrane electrode assembly 1 has an anode 10, a cathode 20, and an electrolyte membrane 30 disposed between the anode and cathode; the anode and cathode are gas diffusion electrodes; the electrolyte membrane contains a solid electrolyte in which a plurality of pores with mean pore diameters of 1 to 30 nm are formed; and the solid electrolyte has a backbone comprising organic groups having one or more metal atoms, oxygen atoms bonded to the metal atoms, and carbon atoms bonded to the metal atoms or oxygen atoms, and also has functional groups with ion-exchange capabilities that are bonded to the organic groups in the pores.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 18, 2003
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Shinji Inagaki, Yoshiaki Fukushima, Masaya Kawasumi, Naoki Hasegawa, Yu Morimoto, Kyoko Tsusaka
  • Patent number: 6607856
    Abstract: In solid polymer electrolyte having high-durability, comprising a polymer electrolyte material having a hydrocarbon part, a chelate group and an electrolyte group are introduced into the polymer electrolyte material. The chelate group contains a phosphonic acid group, nitrogen, both of nitrogen and a phosphonic acid group (one or more selected from the group consisting of alkylamino monophosphonic acid groups, alkylamino diphosphonic acid groups, dialkylamino monophosphonic acid groups, alkylalkylene diamine triphosphonic acid groups, and alkylimino phosphonic acid groups) or, both of nitrogen and a carboxylic acid group (one or more selected from the group consisting of alkylamino monocarboxylic acid groups, alkylamino dicarboxylic acid groups, dialkylamino monocarboxylic acid groups, alkylalkylene diamine tricarboxylic acid groups, and alkylimino carboxylic acid groups).
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: August 19, 2003
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takahisa Suzuki, Takumi Taniguchi, Yu Morimoto, Masaya Kawasumi, Naoki Hasegawa, Atsushi Kamiya
  • Publication number: 20030087972
    Abstract: A Polymer Electrolyte Membrane is formed by hot air drying of a membrane formed with an acidic main-polymer having proton conductivity and capability of forming an electrolyte membrane (S12), and then immersing it into a basic polymer solution to polymer (S14). The basic polymer is introduced in a large quantity into a site acting as a proton conduction pass of the main-polymer to take charge of the proton conduction. Since in the Polymer Electrolyte Membrane, a base polymer takes charge of proton conduction as compared with the case where proton takes charge of the proton conduction as a hydrate, the base polymer shows favorable proton conductivity even in a low humidity state at an elevated temperature exceeding boiling point of water.
    Type: Application
    Filed: August 21, 2002
    Publication date: May 8, 2003
    Inventors: Takumi Taniguchi, Mitsuru Nakano, Masaya Kawasumi, Yu Morimoto, Naoki Hasegawa
  • Publication number: 20030047461
    Abstract: A fuel-cell electrode and a method of manufacturing the fuel-cell electrode achieves a high catalyst utilization ratio and makes it possible to obtain higher output characteristics with a smaller amount of catalyst. The fuel-cell electrode includes a catalytic layer composed of an ion conductive substance, an electron conductive substance and catalytic activation substances. The catalytic activation substances are electrolytically deposited on the electron conductive substance.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 13, 2003
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Kawahara, Seiji Mizuno, Takahiko Asaoka, Yu Morimoto, Kazuo Kawahara
  • Publication number: 20020160272
    Abstract: A first process for producing a modified electrolyte consistent with the present invention comprises an amine treatment step of contacting a solid polymer electrolyte or a precursor thereof with an amine compound. Further, a first modified electrolyte consistent with the present invention consists essentially of what is obtained in such a process. A second process for producing the modified electrolyte consistent with the present invention includes a step of introducing, to a solid polymer compound having a functional group A, a first modifying agent comprising at least one functional group B capable of reacting with the functional group A thereby forming a first intermediate acid group; and the step also includes reacting the functional group A and the functional group B.
    Type: Application
    Filed: February 22, 2002
    Publication date: October 31, 2002
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO
    Inventors: Hiromitsu Tanaka, Arimitsu Usuki, Masaya Kawasumi, Yu Morimoto, Naoki Hasegawa, Mitsuru Nakano, Atsushi Kamiya
  • Publication number: 20020001744
    Abstract: Disclosed is a membrane electrode assembly obtained by bonding electrodes to both surfaces of a solid polymer electrolyte membrane suitably for use in a solid polymer fuel cell. In order to maintain not only the solid polymer electrolyte but also the electrode in appropriate wet states, the catalyst layer of the assembly contains a metalloxane polymer in the intra-catalyst-layer electrolyte including an electrode catalyst preferably in an amount of 0.5 to 50 wt % of the total weight of the intra-catalyst-layer electrolyte and the metalloxane polymer contained therein exclusive of the electrode catalyst. It is also preferred that a metalloxane polymer be included in the solid polymer electrolyte membrane in an amount of 0.5 to 50 wt % of the total weight of the solid polymer electrolyte membrane and the metalloxane polymer contained therein.
    Type: Application
    Filed: May 17, 2001
    Publication date: January 3, 2002
    Applicant: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kyoko Tsusaka, Masaya Kawasumi, Yu Morimoto
  • Publication number: 20010038937
    Abstract: In solid polymer electrolyte having high-durability, comprising a polymer electrolyte material having a hydrocarbon part, a chelate group and an electrolyte group are introduced into the polymer electrolyte material. The chelate group contains a phosphonic acid group, nitrogen, both of nitrogen and a phosphonic acid group (one or more selected from the group consisting of alkylamino monophosphonic acid groups, alkylamino diphosphonic acid groups, dialkylamino monophosphonic acid groups, alkylalkylene diamine triphosphonic acid groups, and alkylimino phosphonic acid groups) or, both of nitrogen and a carboxylic acid group (one or more selected from the group consisting of alkylamino monocarboxylic acid groups, alkylamino dicarboxylic acid groups, dialkylamino monocarboxylic acid groups, alkylalkylene diamine tricarboxylic acid groups, and alkylimino carboxylic acid groups).
    Type: Application
    Filed: November 29, 2000
    Publication date: November 8, 2001
    Inventors: Takahisa Suzuki, Takumi Taniguchi, Yu Morimoto, Masaya Kawasumi, Naoki Hasegawa, Atsushi Kamiya
  • Publication number: 20010026893
    Abstract: The present invention is a grafted polymer electrolyte membrane prepared by first preparing a precursor membrane comprising a polymer which is capable of being graft polymerized, exposing the surface of the precursor membrane to a plasma in an oxidative atmosphere, then graft-polymerizing a side chain polymer to the plasma treated precursor membrane and introducing a proton conductive functional group to the side chain. The resulting grafted polymer electrolyte membrane has excellent stability and performance when used in a proton-exchange membrane fuel cell or for electrolysis of water.
    Type: Application
    Filed: February 16, 2001
    Publication date: October 4, 2001
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Michio Asukabe, Michiaki Kato, Takumi Taniguchi, Yu Morimoto, Masaya Kawasumi