Patents by Inventor Yu-Yuan Chang

Yu-Yuan Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220020721
    Abstract: A method of forming a wafer-bonding structure includes a wafer-bonding step, a through silicon via (TSV) forming step, and a forming bonding pad step. In the wafer-bonding step, at least two wafers are corresponding to and bonded to each other by bonding surfaces thereof. In the TSV forming step, a TSV structure is formed on at least one side of a seal ring structure of one of the wafers, a conductive filler is disposed in the TSV structure, and the TSV structure is overlapped the side of one of the seal ring structure of one of the wafers and a portion of a seal ring structure of another one of the wafers. In the forming bonding pad step, a bonding pad is formed on an outer surface which is relative to the bonding surface of the wafer with the TSV structure, so as to form the wafer-bonding structure.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 20, 2022
    Inventors: Hsingya Arthur WANG, Sheng-Yuan CHOU, Yu-Ting WANG, Wan-Yi CHANG
  • Patent number: 10726805
    Abstract: A display driving apparatus applied to a panel is disclosed. The panel displays a first image with a first refresh rate. A first refresh cycle corresponding to the first refresh rate includes a refresh period and at least one non-refresh period. The display driving apparatus includes a real-time determination module and a data processing module. The real-time determination module is coupled to the panel and used to immediately determine whether the panel wants to replace the originally displayed first image with a second image during the first refresh cycle. The data processing module is coupled to the real-time determination module and the panel. If a determination result of the real-time determination module is yes, the data processing module immediately controls the panel to start to display the second image at a first time during the first refresh cycle.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: July 28, 2020
    Assignee: Raydium Semiconductor Corporation
    Inventors: Chih Chuan Huang, Yu-Yuan Chang, Wen-Fa Hsu
  • Publication number: 20190075679
    Abstract: A power supply module with enhanced heat dissipation effect includes a rack including an opening and an accommodating room connected to the opening, as well as at least one power supply including a fitting section inserted from the opening while positioned within the accommodating room, and a heat dissipation section extending toward the outside of the opening from the opening, in which the power supply is formed in the heat dissipation section with a plurality of heat dissipation holes, in such a way that air is capable of entering the power supply from an output end to form heat convection together with the dissipation holes, so as to form a heat dissipation effect with respect to the power supply.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 7, 2019
    Inventors: Chin-Wen CHOU, Yung-Hsin HUANG, Yu-Yuan CHANG, Chun-Lung SU, Yung-Feng CHIU, Chih-Hao CHEN
  • Publication number: 20190073979
    Abstract: A display driving apparatus applied to a panel is disclosed. The panel displays a first image with a first refresh rate. A first refresh cycle corresponding to the first refresh rate includes a refresh period and at least one non-refresh period. The display driving apparatus includes a real-time determination module and a data processing module. The real-time determination module is coupled to the panel and used to immediately determine whether the panel wants to replace the originally displayed first image with a second image during the first refresh cycle. The data processing module is coupled to the real-time determination module and the panel. If a determination result of the real-time determination module is yes, the data processing module immediately controls the panel to start to display the second image at a first time during the first refresh cycle.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 7, 2019
    Inventors: CHIH CHUAN HUANG, YU-YUAN CHANG, WEN-FA HSU
  • Patent number: 9996134
    Abstract: A method to avoid over-rebooting of a power supply device comprises Step 1: receiving a power-good signal generated by a power supply device working normally; Step 2: checking whether the power-good signal is received; if no, demanding the power supply device to reboot; and Step 3: recording a count of rebootings of the power supply device; after the power supply device reboots, checking again whether the power-good signal is received; if yes, letting the power supply device keep on working and resetting the count of rebootings; if no, demanding the power supply device to reboot again, accumulating the count of rebootings, and checking whether the count of rebootings is greater than a limited count of rebootings; if yes, forbidding the power supply device to reboot. Thus is solved the problem that a power supply device whose abnormality cannot be removed by rebooting may damage the information device.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: June 12, 2018
    Assignee: ZIPPY TECHNOLOGY CORP.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Kuang-Lung Shih, Heng-Chia Chang
  • Patent number: 9966794
    Abstract: A power supply for a redundant power system includes a housing, a first circuit board, a second circuit board and a cooling fan. The first and second circuit boards are sequentially disposed in the housing. The length of the first circuit board is smaller than that of the second circuit board. Between the first and second circuit boards is a gap. The first and second circuit boards are each distributed with multiple electronic elements, and are connected by at least one electrical connecting line. The electronic elements form a power supply circuit, in which a bridge rectification module is disposed on the first circuit board and close to the gap. The cooling fan is at least connected to the first circuit board and a second circuit board to locate in the gap, and directly provides the bridge rectification module with a first cooling air current when activated.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 8, 2018
    Assignee: ZIPPY TECHNOLOGY CORP.
    Inventors: Chin-Wen Chou, Yung-Hsin Huang, Yu-Yuan Chang, Tzung-Han Lee, Heng-Chia Chang
  • Patent number: 9874589
    Abstract: An inrush current recording module is installed in a power supply unit. The power supply unit has a front-stage power circuit and a back-stage power circuit. The front-stage power circuit includes a first ground terminal, and the back-stage power circuit includes a second ground terminal. The inrush current recording module includes a series circuit and a detection recording unit. The series circuit is formed by a capacitor and a resistor, and includes two ends thereof respectively connected to the first ground terminal and the second ground terminal. The detection recording unit detects the resistor to generate a voltage signal, compares the voltage signal with a voltage determination level, starts timing an inspection period when the voltage signal is greater than the voltage determination level, and records whether a current inrush current is harmful or harmless according to whether a power output signal is obtained within the inspection period.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: January 23, 2018
    Assignee: ZIPPY TECHNOLOGY CORP.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Kuang-Lung Shih, Wen-Lung Li, Heng-Chia Chang
  • Publication number: 20170308140
    Abstract: A method to avoid over-rebooting of a power supply device comprises Step 1: receiving a power-good signal generated by a power supply device working normally; Step 2: checking whether the power-good signal is received; if no, demanding the power supply device to reboot; and Step 3: recording a count of rebootings of the power supply device; after the power supply device reboots, checking again whether the power-good signal is received; if yes, letting the power supply device keep on working and resetting the count of rebootings; if no, demanding the power supply device to reboot again, accumulating the count of rebootings, and checking whether the count of rebootings is greater than a limited count of rebootings; if yes, forbidding the power supply device to reboot. Thus is solved the problem that a power supply device whose abnormality cannot be removed by rebooting may damage the information device.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 26, 2017
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Kuang-Lung SHIH, Heng-Chia CHANG
  • Publication number: 20170308139
    Abstract: A damage identification method for a redundant power supply system is disclosed. The redundant power supply system comprises a plurality of power supply devices and a control unit. In application of the method, the control unit respectively sends switching signals to the power supply devices to boot every power supply device. The control unit checks whether each of the power supply devices sends back a power state signal. If at least one power supply device does not sends back the power state signal, the control unit resends the switching signal to the power supply device to compulsorily reboot the power supply device, which does not output the power state signal. Thereby is solved the problem that the conventional technology cannot instantly exclude temporary abnormalities and causes the user to misjudge the failure of a power supply device.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 26, 2017
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Kuang-Lung SHIH, Heng-Chia CHANG
  • Publication number: 20170269941
    Abstract: A method for forcibly resetting a microcontroller is provided. A switching module is provided to power a microcontroller. The switching module detects through the control pin whether a notification port of a load connected to the control pin changes its potential level in response to a communication error between the load and the microcontroller detected by the load. When the switching module learns the change in the potential level of the notification pin, a powering status of the switching module is switched to stop powering the microcontroller to cause the microcontroller to stop operating. It is detected through the control pin whether the load again changes the potential level of the notification port in response to the microcontroller having stopped operating. When the change is detected, the powering status of the switching module is switched to again power and reactivate the microcontroller.
    Type: Application
    Filed: May 5, 2016
    Publication date: September 21, 2017
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Kuang-Lung SHIH, Wen-Lung LI
  • Publication number: 20170138989
    Abstract: An inrush current recording module is installed in a power supply unit. The power supply unit has a front-stage power circuit and a back-stage power circuit. The front-stage power circuit includes a first ground terminal, and the back-stage power circuit includes a second ground terminal. The inrush current recording module includes a series circuit and a detection recording unit. The series circuit is formed by a capacitor and a resistor, and includes two ends thereof respectively connected to the first ground terminal and the second ground terminal. The detection recording unit detects the resistor to generate a voltage signal, compares the voltage signal with a voltage determination level, starts timing an inspection period when the voltage signal is greater than the voltage determination level, and records whether a current inrush current is harmful or harmless according to whether a power output signal is obtained within the inspection period.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 18, 2017
    Inventors: TSUN-TE SHIH, YU-YUAN CHANG, KUANG-LUNG SHIH, WEN-LUNG LI, HENG-CHIA CHANG
  • Patent number: 9448605
    Abstract: A redundant power supply system providing rapid start of backup includes at least one primary power supply, at least one secondary power supply and a power integration panel. The secondary power supply includes a voltage regulation and energy saving element which has regulation potential after the secondary power supply being booted up. When the secondary power supply is triggered to shut down and the regulation potential is lower than a low voltage judgment criterion, it enters a standby working mode in which the secondary power supply is restarted for a transient working period to charge the voltage regulation and energy saving element. The power integration panel is electrically connected to the primary power supply and the secondary power supply, and inspects output status of the primary power supply and the secondary power supply in regular conditions to determine to boot up or shut down the secondary power supply.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: September 20, 2016
    Assignee: ZIPPY TECHNOLOGY CORP.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Heng-Chia Chang
  • Patent number: 9451721
    Abstract: A modular redundant power supply includes a casing, a power integration panel, a plurality of power supply modules and a power regulation module. The casing has an installation space defined into a first installation zone and a second installation zone. The power integration panel is located in the installation space. The power supply modules are installed on the first installation zone and connected to the power integration panel. Each power supply module outputs a duty power to the power integration panel after being started. The power regulation module gets the duty power from the power integration panel and regulates thereof to generate an auxiliary duty power output to the power integration panel so that the power integration panel can supply the duty power and the auxiliary duty power to an external device.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: September 20, 2016
    Assignee: ZIPPY TECHNOLOGY CORP.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Heng-Chia Chang, Chun-Lung Su
  • Patent number: 9401627
    Abstract: A redundant power supply system providing alternate standby includes at least one primary power supply, at least one secondary power supply and a power integration panel. Each primary power supply receives a first power ON/OFF signal and starts to output a primary duty power. Each secondary power supply receives a second power ON/OFF signal and starts to output a secondary duty power. The power integration panel is electrically connected to the primary power supply and the secondary power supply and has a standby mode to receive a power ON/OFF signal from a motherboard and output alternately at a selected time interval the first power ON/OFF signal to the primary power supply or the second power ON/OFF signal to the secondary power supply to make the primary power supply and the secondary power supply on standby alternately.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: July 26, 2016
    Assignee: Zippy Technology Corp.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Heng-Chia Chang
  • Publication number: 20160105057
    Abstract: A redundant power supply system providing alternate standby includes at least one primary power supply, at least one secondary power supply and a power integration panel. Each primary power supply receives a first power ON/OFF signal and starts to output a primary duty power. Each secondary power supply receives a second power ON/OFF signal and starts to output a secondary duty power. The power integration panel is electrically connected to the primary power supply and the secondary power supply and has a standby mode to receive a power ON/OFF signal from a motherboard and output alternately at a selected time interval the first power ON/OFF signal to the primary power supply or the second power ON/OFF signal to the secondary power supply to make the primary power supply and the secondary power supply on standby alternately.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 14, 2016
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Heng-Chia CHANG
  • Publication number: 20160098072
    Abstract: A control system capable of controlling activating/deactivating of multiple motherboards via cloud includes a plurality of motherboards, a plurality of power supplies respectively corresponding to the motherboards, a cloud monitoring platform, and a power on/off control module connected to the motherboards and signally electrically connected to the cloud monitoring platform. The cloud monitoring platform includes a graphic control interface, and allows to a user to log in for operations to generate a control signal. After receiving the control signal, the power on/off control module analyzes the control signal to determine to output a trigger signal to at least one of the motherboards. In response to the trigger signal received, the motherboard outputs a power on/off signal to the corresponding power supply connected to turn on or turn of that power supply.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Kuang-Lung SHIH
  • Publication number: 20160062431
    Abstract: A redundant power supply system providing rapid start of backup includes at least one primary power supply, at least one secondary power supply and a power integration panel. The secondary power supply includes a voltage regulation and energy saving element which has regulation potential after the secondary power supply being booted up. When the secondary power supply is triggered to shut down and the regulation potential is lower than a low voltage judgment criterion, it enters a standby working mode in which the secondary power supply is restarted for a transient working period to charge the voltage regulation and energy saving element. The power integration panel is electrically connected to the primary power supply and the secondary power supply, and inspects output status of the primary power supply and the secondary power supply in regular conditions to determine to boot up or shut down the secondary power supply.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Heng-Chia CHANG
  • Publication number: 20150286274
    Abstract: A power supply device with reduced power consumption is electrically connected to a motherboard. The motherboard outputs a power-on signal or a power-off signal to the power supply device when being triggered. The power supply device includes a standby power supply module which modulates an external power to output a standby power. Upon receiving the power-on signal, the power supply device deactivates the standby power supply module, but activates a main power supply module to modulate the external power to output an operating power to the motherboard to replace the standby power. Upon receiving the power-off signal, the power supply device deactivates the main power supply module, but reactivates the standby power supply module so that the standby power supply module outputs the standby power to the motherboard.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 8, 2015
    Applicant: ZIPPY TECHNOLOGY CORP.
    Inventors: Tsun-Te SHIH, Yu-Yuan CHANG, Heng-Chia CHANG
  • Patent number: 8924745
    Abstract: A power enabling circuit for uninterrupted power supplies includes a main power supply system, a backup power supply system and a power enabling control circuit. The main power supply system is electrically connected to an external power source to convert and output a conversion power, and generates a first power good signal when the conversion power is output normally. The backup power supply system outputs a backup power when the main power supply system cannot output the conversion power. The power enabling control circuit receives the first power good signal output from the main power supply system and simulates to generate a corresponding second power good signal, and also includes a normal power supply state in which the second power good signal is sent to a motherboard and a backup power supply state to receive the backup power and continuously output the second power good signal to the motherboard.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Zippy Technology Corp.
    Inventors: Tsun-Te Shih, Yu-Yuan Chang, Kuang-Lung Shih, Po-Wen Hsiao
  • Patent number: D852151
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 25, 2019
    Assignee: ZIPPY TECHNOLOGY CORP.
    Inventors: Chin-Wen Chou, Yung-Hsin Huang, Yu-Yuan Chang, Yung-Feng Chiu, Chun-Lung Su, Chih-Hao Chen