Patents by Inventor Yuchao GUO

Yuchao GUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926787
    Abstract: A well cementing method is described for improving cementing quality by controlling the hydration heat of cement slurry. By controlling the degree and/or rate of hydration heat release from cement slurry, the method improves the hydration heat release during formation of cement with curing of cement slurry, improves the binding quality between the cement and the interfaces, and in turn improves the cementing quality at the open hole section and/or the overlap section. The cementing method improves cementing quality of oil and gas wells and reduces the risk of annular pressure.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: March 12, 2024
    Assignees: PetroChina Company Limited, CNPC Engineering Technology R&D Company Limited
    Inventors: Shuoqiong Liu, Hua Zhang, Jianzhou Jin, Ming Xu, Yongjin Yu, Fengzhong Qi, Congfeng Qu, Hong Yue, Youcheng Zheng, Wei Li, Yong Ma, Youzhi Zheng, Zhao Huang, Jinping Yuan, Zhiwei Ding, Chongfeng Zhou, Chi Zhang, Zishuai Liu, Hongfei Ji, Yuchao Guo, Xiujian Xia, Yong Li, Jiyun Shen, Huiting Liu, Yusi Feng, Bin Lyu
  • Publication number: 20230278927
    Abstract: A high-strength Portland cement slurry for ultra-high-temperature cementing, a preparation method therefor and an application thereof. In parts by weight, the composition of the cement slurry comprises: 100 parts of Portland cement, 4-6 parts of a high temperature anti-cracking material, 80-105 parts of a high-temperature reinforcing material, 70-78 parts of water, 0.5-1.5 parts of a dispersant, 1-3 parts of a fluid loss reducer, 0.5-2.5 parts of a retarder and 0.2-0.5 parts of a defoamer; the high-temperature reinforcing material is a combination of acid-washed quartz sand, metakaolin and aluminum sulfate, a combination of acid-washed quartz sand, metakaolin, feldspar and sodium sulfate, or a combination of acid-washed quartz sand, metakaolin, feldspar and calcium nitrite. The cement slurry has good settling stability, rapid strength development in low temperatures, high compressive strength of cement stone at a high temperature of 600° C.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Inventors: Hua Zhang, Jianzhou Jin, Yongjin Yu, Congfeng Qu, Fengzhong Qi, Ming Xu, Shuoqiong Liu, Zhaohui Wang, Yuchao Guo, Jiliang Liu, Bin Lyu, Zhiwei Ding, Chi Zhang, Zishuai Liu, Hongfei Ji, Xiujian Xia, Yong Li, Chongfeng Zhou, Xiaobing Zhang
  • Patent number: 11618844
    Abstract: The invention provides a high temperature resistant Portland cement slurry and a production method thereof. The high temperature resistant Portland cement slurry comprises the following components by weight: 100 parts of an oil well Portland cement, 60-85 parts of a high temperature reinforcing material, 68-80 parts of fresh water, 1-200 parts of a density adjuster, 0.1-1.5 parts of a suspension stabilizer, 0.8-1.5 parts of a dispersant, 3-4 parts of a fluid loss agent, 0-3 parts of a retarder and 0.2-0.8 part of a defoamer. The high temperature resistant Portland cement slurry has a good sedimentation stability at normal temperature, and develops strength rapidly at a low temperature. The compressive strength is up to 40 MPa or more at a high temperature of 350° C., and the long-term high-temperature compressive strength develops stably without degradation.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: April 4, 2023
    Assignees: CHINA NATIONAL PETROLEUM CORPORATION, CNPC ENGINEERING TECHNOLOGY R&D COMPANY LIMITED
    Inventors: Hua Zhang, Jianzhou Jin, Shuoqiong Liu, Fengzhong Qi, Yongjin Yu, Ming Xu, Jinping Yuan, Zhiwei Ding, Chongfeng Zhou, Chi Zhang, Zishuai Liu, Yusi Feng, Yuchao Guo
  • Publication number: 20200399525
    Abstract: A well cementing method is described for improving cementing quality by controlling the hydration heat of cement slurry. By controlling the degree and/or rate of hydration heat release from cement slurry, the method improves the hydration heat release during formation of cement with curing of cement slurry, improves the binding quality between the cement and the interfaces, and in turn improves the cementing quality at the open hole section and/or the overlap section. The cementing method improves cementing quality of oil and gas wells and reduces the risk of annular pressure.
    Type: Application
    Filed: April 21, 2020
    Publication date: December 24, 2020
    Inventors: Shuoqiong Liu, Hua Zhang, Jianzhou Jin, Ming Xu, Yongjin Yu, Fengzhong Qi, Congfeng Qu, Hong Yue, Youcheng Zheng, Wei Li, Yong Ma, Youzhi Zheng, Zhao Huang, Jinping Yuan, Zhiwei Ding, Chongfeng Zhou, Chi Zhang, Zishuai Liu, Hongfei Ji, Yuchao Guo, Xiujian Xia, Yong Li, Jiyun Shen, Huiting Liu, Yusi Feng, Bin Lyu
  • Publication number: 20190241792
    Abstract: The invention provides a high temperature resistant Portland cement slurry and a production method thereof. The high temperature resistant Portland cement slurry comprises the following components by weight: 100 parts of an oil well Portland cement, 60-85 parts of a high temperature reinforcing material, 68-80 parts of fresh water, 1-200 parts of a density adjuster, 0.1-1.5 parts of a suspension stabilizer, 0.8-1.5 parts of a dispersant, 3-4 parts of a fluid loss agent, 0-3 parts of a retarder and 0.2-0.8 part of a defoamer. The high temperature resistant Portland cement slurry has a good sedimentation stability at normal temperature, and develops strength rapidly at a low temperature. The compressive strength is up to 40 MPa or more at a high temperature of 350° C., and the long-term high-temperature compressive strength develops stably without degradation.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 8, 2019
    Inventors: Hua ZHANG, Jianzhou JIN, Shuoqiong LIU, Fengzhong QI, Yongjin YU, Ming XU, Jinping YUAN, Zhiwei DING, Chongfeng ZHOU, Chi ZHANG, Zishuai LIU, Yusi FENG, Yuchao GUO