Patents by Inventor Yugang Sun

Yugang Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10384936
    Abstract: Methods for forming nanostructures of various shapes are disclosed. Nanocubes, nanowires, nanopyramids and multiply twinned particles of silver may by formed by combining a solution of silver nitrate in ethylene glycol with a solution of poly(vinyl pyrrolidone) in ethylene glycol. Hollow nanostructures may be formed by reacting a solution of solid nanostructures comprising one of a first metal and a first metal alloy with a metal salt that can be reduced by the first metal or first metal alloy. Nanostructures comprising a core with at least one nanoshell may be formed by plating a nanostructure and reacting the plating with a metal salt.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: August 20, 2019
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Younan Xia, Yugang Sun
  • Patent number: 10374072
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 10355113
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: July 16, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Patent number: 10204864
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: February 12, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard
  • Publication number: 20180311741
    Abstract: Methods for producing silver nanostructures with improved dimensional control, yield, purity, monodispersity, and scale of synthesis.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 1, 2018
    Applicant: University of Washington
    Inventors: Younan Xia, Sang-Hyuk Im, Yugang Sun, Yun Tack Lee, Benjamin Wiley
  • Patent number: 9975804
    Abstract: The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and second precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 22, 2018
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Jie Li, Yugang Sun, Ralph T. Muehleisen, Leah B. Guzowski, Xiaojie Yan, Samuel Dull, Ioannina Castano
  • Publication number: 20170309733
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 26, 2017
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Publication number: 20170297949
    Abstract: The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and second precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 19, 2017
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Jie LI, Yugang SUN, Ralph T. MUEHLEISEN, Leah B. GUZOWSKI, Xiaojie YAN, Samuel Dull, Ioannina CASTANO
  • Patent number: 9768086
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 19, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 9761444
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 12, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20170200679
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: October 31, 2016
    Publication date: July 13, 2017
    Inventors: John A. ROGERS, Dahl-Young KHANG, Yugang SUN, Etienne MENARD
  • Publication number: 20160381789
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: March 29, 2016
    Publication date: December 29, 2016
    Inventors: John A. ROGERS, Matthew MEITL, Yugang SUN, Heung Cho KO, Andrew CARLSON, Won Mook CHOI, Mark STOYKOVICH, Hanqing JIANG, Yonggang HUANG, Ralph G. NUZZO, Zhengtao ZHU, Etienne MENARD, Dahl-Young KHANG
  • Patent number: 9515025
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: December 6, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Dahl-Young Khang, Yugang Sun, Etienne Menard
  • Publication number: 20160293794
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 6, 2016
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Publication number: 20160284544
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Application
    Filed: March 29, 2016
    Publication date: September 29, 2016
    Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
  • Publication number: 20160271701
    Abstract: Methods for producing silver nanostructures with improved dimensional control, yield, purity, monodispersity, and scale of synthesis.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Applicant: University of Washington
    Inventors: Younan Xia, Sang-Hyuk Im, Yugang Sun, Yun Tack Lee, Benjamin Wiley
  • Patent number: 9450043
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: September 20, 2016
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20160208360
    Abstract: A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 21, 2016
    Applicant: UChicago Argonne, LLC
    Inventors: Yugang Sun, Yongxing Hu
  • Patent number: 9394168
    Abstract: Methods for forming nanostructures of various shapes are disclosed. Nanocubes, nanowires, nanopyramids and multiply twinned particles of silver may by formed by combining a solution of silver nitrate in ethylene glycol with a solution of poly(vinyl pyrrolidone) in ethylene glycol. Hollow nanostructures may be formed by reacting a solution of solid nanostructures comprising one of a first metal and a first metal alloy with a metal salt that can be reduced by the first metal or first metal alloy. Nanostructures comprising a core with at least one nanoshell may be formed by plating a nanostructure and reacting the plating with a metal salt.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: July 19, 2016
    Assignee: University of Washington
    Inventors: Younan Xia, Yugang Sun
  • Patent number: 9388477
    Abstract: A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: July 12, 2016
    Assignee: UChicago Argonne, LLC
    Inventors: Yugang Sun, Yongxing Hu