Patents by Inventor Yuichi Hirakawa

Yuichi Hirakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898995
    Abstract: A method for evaluating a crack in a metal member comprises a first removal step (S10) and a second removal step (S20). In the first removal step (S10), a step for electrolyzing a metal member having an oxide scale formed on a surface thereof, a step for acquiring an image of the oxide scale as a first image, and a step for determining whether or not a scale crack has occurred are repeated until occurrence of a scale crack is determined. In the second removal step (S20), a step for electrolyzing the metal member having the scale crack, a second image acquisition step for acquiring an image of the oxide scale as a second image, and a second determination step for determining whether or not the scale crack has disappeared are repeated until disappearance of the oxide scale is determined.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 13, 2024
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroaki Fukushima, Yuichi Hirakawa, Hiroaki Yoshida, Masahiko Yamashita, Takeo Tokumoto
  • Publication number: 20220349790
    Abstract: A method for evaluating a crack in a metal member comprises a first removal step (S10) and a second removal step (S20). In the first removal step (S10), a step for electrolyzing a metal member having an oxide scale formed on a surface thereof, a step for acquiring an image of the oxide scale as a first image, and a step for determining whether or not a scale crack has occurred are repeated until occurrence of a scale crack is determined. In the second removal step (S20), a step for electrolyzing the metal member having the scale crack, a second image acquisition step for acquiring an image of the oxide scale as a second image, and a second determination step for determining whether or not the scale crack has disappeared are repeated until disappearance of the oxide scale is determined.
    Type: Application
    Filed: July 2, 2020
    Publication date: November 3, 2022
    Inventors: Hiroaki FUKUSHIMA, Yuichi HIRAKAWA, Hiroaki YOSHIDA, Masahiko YAMASHITA, Takeo TOKUMOTO
  • Patent number: 11378526
    Abstract: A faulted condition determination method is designed to detect a chromium content and a nickel content in a predetermined boundary region proximate to a boundary between a high-strength ferrite steel and a weld material in a welded joint in which the high-strength ferrite steel and another steel are welded together using the weld material containing nickel and to thereby determine the faulted condition of the predetermined boundary region based on the chromium content and the nickel content. Accordingly, it is possible to appropriately determine the faulted condition of welding of a replacement part in which a high-strength ferrite steel and another steel are welded together using a nickel-based weld material.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: July 5, 2022
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Nobuhiko Saito, Nobuyoshi Komai, Yuichi Hirakawa, Hiroaki Fukushima, Kota Sawada, Kazuhiro Kimura, Kaoru Sekido
  • Publication number: 20200165709
    Abstract: A gas turbine disk material according to the present invention contains: C: from 0.05 to 0.15%; Ni: from 0.25 to 1.50%; Cr: from 9.0 to 12.0%; Mo: from 0.50 to 0.90%; W: from 1.0 to 2.0%; V: from 0.10 to 0.30%; Nb: from 0.01 to 0.10%; Co: from 0.01 to 4.0%; B: from 0.0005 to 0.010%; N: from 0.01 to 0.05%; Mn: 0.40% or less; Si: 0.10% or less; and Al: 0.020% or less. A balance is of Fe and unavoidable impurities. Additionally, as a heat treatment method, a quenching temperature of a forged material having the component composition is set within a range from 1050 to 1150° C.
    Type: Application
    Filed: September 19, 2018
    Publication date: May 28, 2020
    Inventors: Hiroki TANAKA, Yuichi HIRAKAWA, Yoshikuni KADOYA, Tomoyuki HIRATA, Takayoshi IIJIMA, Kazuharu HIROKAWA
  • Patent number: 10590508
    Abstract: A method for manufacturing a shaft body by welding a plurality of shaft members together and forming the shaft body, the method including: a primary tempering step of subjecting a range in at least one of the shaft members, which is in the vicinity of an end of another shaft member side adjacent thereto, to tempering before the shaft members are welded together so that a strength of an end side of a region thereof is lower than a strength at a side which is opposite to the end of the region thereof; a welding step of welding the shaft members together after the primary tempering step; and a secondary tempering step of tempering the vicinity of a weld part between the shaft members after the welding step.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: March 17, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yuichi Hirakawa, Hiroaki Fukushima, Shin Nishimoto, Hiroyuki Endo
  • Publication number: 20190250110
    Abstract: A faulted condition determination method is designed to detect a chromium content and a nickel content in a predetermined boundary region proximate to a boundary between a high-strength ferrite steel and a weld material in a welded joint in which the high-strength ferrite steel and another steel are welded together using the weld material containing nickel and to thereby determine the faulted condition of the predetermined boundary region based on the chromium content and the nickel content. Accordingly, it is possible to appropriately determine the faulted condition of welding of a replacement part in which a high-strength ferrite steel and another steel are welded together using a nickel-based weld material.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 15, 2019
    Inventors: Nobuhiko SAITO, Nobuyoshi KOMAI, Yuichi HIRAKAWA, Hiroaki FUKUSHIMA, Kota SAWADA, Kazuhiro KIMURA, Kaoru SEKIDO
  • Patent number: 9982545
    Abstract: The precipitation hardened martensitic stainless steel is characterized by containing, in percent by weight, 12.25 to 14.25% Cr, 7.5 to 8.5% Ni, 1.0 to 2.5% Mo, 0.05% or less C, 0.2% or less Si, 0.4% or less Mn, 0.03% or less P, 0.005% or less S, 0.008% or less N, 0.90 to 2.25% Al, the balance substantially being Fe, and the total content of Cr and Mo being 14.25 to 16.75%. A turbine moving blade and a steam turbine are manufactured by using this martensitic stainless steel.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 29, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yuichi Hirakawa, Yoshikuni Kadoya, Hiroharu Ooyama, Tatsuya Furukawa, Naoto Tochitani
  • Patent number: 9819009
    Abstract: A lithium-ion secondary battery including a negative electrode including negative-electrode active-material particles including an element being capable of sorbing and desorbing lithium ions, and being capable of alloying with lithium; or/and an elementary compound including an element that is capable of alloying with lithium; a positive electrode including a positive-electrode active material that enables Li ions to be sorbed therein and desorbed therefrom; and an electrolytic solution made by dissolving an electrolyte in a solvent. The negative-electrode active-material particles include particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more thereof when the entirety of said negative-electrode active-material particles, which are included in said negative electrode, is taken as 100% by volume, and the negative-electrode active-material particles exhibit a “D10” being 3 ?m or more. The solvent in the electrolytic solution includes a fluorinated ethylene carbonate.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: November 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Patent number: 9819007
    Abstract: A negative-electrode material has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: November 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Patent number: 9819008
    Abstract: A negative electrode for lithium-ion secondary battery including a negative electrode that includes a current collector; and a negative-electrode active-material layer formed on a surface of the current collector, and including negative-electrode active-material particles. The negative-electrode active-material particles include an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium, the negative-electrode active-material particles include particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more thereof when the entirety is taken as 100% by volume, and exhibit a “D10” being 3 ?m or more. The negative-electrode active-material layer having a thickness that is 1.4 times or more of a “D90” that said negative-electrode active-material particles exhibit.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: November 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Publication number: 20170298468
    Abstract: A method for manufacturing a shaft body by welding a plurality of shaft members together and forming the shaft body, the method including: a primary tempering step of subjecting a range in at least one of the shaft members, which is in the vicinity of an end of another shaft member side adjacent thereto, to tempering before the shaft members are welded together so that a strength of an end side of a region thereof is lower than a strength at a side which is opposite to the end of the region thereof; a welding step of welding the shaft members together after the primary tempering step; and a secondary tempering step of tempering the vicinity of a weld part between the shaft members after the welding step.
    Type: Application
    Filed: October 9, 2015
    Publication date: October 19, 2017
    Inventors: Yuichi HIRAKAWA, Hiroaki FUKUSHIMA, Shin NISHIMOTO, Hiroyuki ENDO
  • Patent number: 9689789
    Abstract: A first measured value of a specific physical quantity at a target portion is correlated with a damage evaluation index to calculate a damage degree corresponding to the first measured value. The specific physical quantity is measured at least once at a position corresponding to the first measurement position in another time period having a different usage elapsed time from that of the first measurement, and these second and subsequent measured values are correlated with damage degrees calculated based on temporal changes corresponding to the second and subsequent measurements. A new damage evaluation index is approximately calculated based on a relationship between the first, second, and subsequent measured values and the damage degrees corresponding to the first, second, and subsequent measured values.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 27, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Nobuyoshi Komai, Hiroaki Fukushima, Yuichi Hirakawa, Hiroyuki Ohyama, Takeshi Miyazawa, Hiroaki Yoshida
  • Publication number: 20170084905
    Abstract: A negative-electrode stuff has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi HIRAKAWA, Manabu MIYOSHI, Hideaki SHINODA, Takayuki KATO, Keiichi HAYASHI, Kayo MIZUNO, Yoshikatsu KAWABATA, Megumi YAMAMOTO
  • Publication number: 20170084906
    Abstract: A negative-electrode stuff has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi HIRAKAWA, Manabu MIYOSHI, Hideaki SHINODA, Takayuki KATO, Keiichi HAYASHI, Kayo MIZUNO, Yoshikatsu KAWABATA, Megumi YAMAMOTO
  • Patent number: 9337477
    Abstract: To provide a lithium ion secondary battery electrode in which a coated layer is held on a surface of an active material layer over a long period of time to suppress decomposition of the electrolysis solution and to enhance the cyclability, a manufacturing process for the same, and a lithium ion secondary battery using the electrode. A lithium ion secondary battery electrode includes a current collector, an active material layer containing a binder formed on a surface of the current collector, and a coated layer formed on the surface of at least a part of the active material layer, wherein the coated layer is an acrylic type copolymer cured substance including an acrylic type main chain and a side chain having polyester or polyether graft-polymerized to the acrylic type main chain and the coated layer is chemically bonded with the binder.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: May 10, 2016
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junichi Niwa, Yuichi Hirakawa, Manabu Miyoshi, Keiichi Hayashi, Hitotoshi Murase
  • Patent number: 9306220
    Abstract: To provide a lithium ion secondary battery electrode in which a coated layer is held on a surface of an active material layer over a long period of time to suppress decomposition of the electrolysis solution and to enhance the cyclability, a manufacturing process for the same, and a lithium ion secondary battery using the electrode. A lithium ion secondary battery electrode includes a current collector, an active material layer containing a binder formed on a surface of the current collector, and a coated layer formed on the surface of at least a part of the active material layer, wherein the coated layer contains a silicone-acrylic graft copolymer cured substance including an acrylic type main chain having a functional group and a side chain having a silicone graft-polymerized to the acrylic type main chain, and the coated layer is chemically bonded with the binder.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: April 5, 2016
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junichi Niwa, Yuichi Hirakawa, Manabu Miyoshi, Keiichi Hayashi, Hitotoshi Murase
  • Patent number: 9214677
    Abstract: To provide a lithium ion secondary battery electrode in which a coat is held on a surface of an active material layer over a long period of time to suppress decomposition of the electrolysis solution and to enhance the cyclability, a manufacturing process for the same, and a lithium ion secondary battery using the electrode. A lithium ion secondary battery electrode includes a current collector, an active material layer containing a binder formed on a surface of the current collector, and a coat containing modified polydimethylsiloxane formed on a surface of at least a part of the active material layer, wherein the coat is chemically bonded with the binder.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 15, 2015
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Keiichi Hayashi, Hitotoshi Murase
  • Publication number: 20150315921
    Abstract: The precipitation hardened martensitic stainless steel is characterized by containing, in percent by weight, 12.25 to 14.25% Cr, 7.5 to 8.5% Ni, 1.0 to 2.5% Mo, 0.05% or less C, 0.2% or less Si, 0.4% or less Mn, 0.03% or less P, 0.005% or less S, 0.008% or less N, 0.90 to 2.25% Al, the balance substantially being Fe, and the total content of Cr and Mo being 14.25 to 16.75%. A turbine moving blade and a steam turbine are manufactured by using this martensitic stainless steel.
    Type: Application
    Filed: July 14, 2015
    Publication date: November 5, 2015
    Inventors: Yuichi HIRAKAWA, Yoshikuni KADOYA, Hiroharu OOYAMA, Tatsuya FURUKAWA, Naoto TOCHITANI
  • Publication number: 20150136280
    Abstract: This method for setting aging conditions is provided with: a step for acquiring a master curve (20) indicating the relationship between an aging condition parameter and a material strength parameter by executing an aging process on a standard material; a step for acquiring a fitting point (A) indicating the value of the material strength parameter of a subject material of which the chemical component parameters and/or metal structure parameters differ from those of the standard material; a step for acquiring a corrected aging curve (30) by correcting the master curve (20) in a manner so that a portion of the master curve (20) corresponds to the fitting point (A); and a step for setting aging conditions for the subject material on the basis of the corrected aging curve (30).
    Type: Application
    Filed: August 19, 2013
    Publication date: May 21, 2015
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yuichi Hirakawa, Takayuki Kurimura, Hiroharu Oyama
  • Publication number: 20150019142
    Abstract: A first measured value of a specific physical quantity at a target portion is correlated with a damage evaluation index to calculate a damage degree corresponding to the first measured value. The specific physical quantity is measured at least once at a position corresponding to the first measurement position in another time period having a different usage elapsed time from that of the first measurement, and these second and subsequent measured values are correlated with damage degrees calculated based on temporal changes corresponding to the second and subsequent measurements. A new damage evaluation index is approximately calculated based on a relationship between the first, second, and subsequent measured values and the damage degrees corresponding to the first, second, and subsequent measured values.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 15, 2015
    Inventors: Nobuyoshi Komai, Hiroaki Fukushima, Yuichi Hirakawa, Hiroyuki Ohyama, Takeshi Miyazawa, Hiroaki Yoshida