Patents by Inventor Yuichiro Ueno

Yuichiro Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916196
    Abstract: A lithium-ion secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution. The electrolytic solution includes a solvent, an electrolyte salt, and an aminoanthraquinone polymer compound. The aminoanthraquinone polymer compound includes a divalent maleic anhydride part and a divalent aminoanthraquinone derivative part.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: February 27, 2024
    Assignees: Murata Manufacturing Co., Ltd., Hydro-Quebec
    Inventors: Yuichiro Asakawa, Hiroshi Ueno, Shinichi Uesaka, Jean-Christophe Daigle, Melanie Beaupre, Karim Zaghib
  • Publication number: 20230056147
    Abstract: An object of the present invention is to increase sensitivity and position resolution of measurement of an arrival position of a charged particle beam irradiated during treatment. A beam monitoring system includes: a gamma ray detector that detects gamma rays generated by interaction between a charged particle beam and an irradiation target; a shield that is disposed between the gamma ray detector and an irradiation axis of the beam and has a plurality of slits; and a calculation unit that analyzes a detection result of the gamma ray detector and reconfigures a count distribution of the detected gamma rays into a distribution of the beam irradiation axis based on a geometric arrangement of the shield, the detector, and the irradiation axis of the beam. The calculation unit obtains the arrival position of the particle beam from the reconfigured distribution.
    Type: Application
    Filed: August 25, 2020
    Publication date: February 23, 2023
    Inventors: Kota SASAKI, Kouichi OKADA, Yuichiro UENO
  • Patent number: 11536858
    Abstract: Provided is a radiation monitor and the like capable of appropriately measuring radiation. A radiation monitor (100) includes: radiation detection units (11, 12); optical fibers (13p, 13q) that transmit light generated by a plurality of radiation detection elements (11a, 12a) to merge; a light detection unit (14) that converts the light after merging guided to the light detection unit into an electric pulse; a measurement device (15) that calculates a dose rate of radiation based on a count rate of the electric pulses; and an analysis/display device (16). Housings (11b, 12b) include a housing (11b) made of a first material and another housing (12b) made of a second material.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: December 27, 2022
    Assignee: HITACHI, LTD.
    Inventors: Takahiro Tadokoro, Yuichiro Ueno, Katsunori Ueno, Kouichi Okada, Shuichi Hatakeyama, Yasushi Nagumo, Takahiro Itou, Yoshinobu Sakakibara
  • Patent number: 11493648
    Abstract: A radiation monitor includes a radiation detection unit detecting radiation, and an optical fiber transmitting photons emitted from a light emitting element of the radiation detection unit, wherein the radiation detection unit includes a first light emitting element generating a photon in response to incident radiation, a chemical compound part having chemical compounds which generate charged particles by nuclear reactions with incident neutrons, and a second light emitting element being located between the first light emitting element and the chemical compound part and generating a photon in response to radiation.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 8, 2022
    Assignee: HITACHI, LTD.
    Inventors: Takahiro Tadokoro, Yuichiro Ueno, Katsunori Ueno, Kouichi Okada, Shuichi Hatakeyama, Yasushi Nagumo, Tooru Shibutani, Keisuke Sasaki, Akira Oozone
  • Patent number: 11400315
    Abstract: A radiation monitoring device 1 includes a scintillator portion 10 which emits light whose intensity depends on a dose of incident radiation, an optical fiber 20 which transmits photons generated in the scintillator portion 10, a photoelectric converter 30 which converts photons transmitted by the optical fiber 20 to electric signals, a signal counter 40 which counts each of electric signals after being converted by the photoelectric converter 30 with a certain dead time adjusted relative to time width of an irradiation pulse of radiation, a dose calculation unit 50 which calculates a dose from a signal count value counted by the signal counter 40, and a display unit 60 which displays a result of measurement calculated by the dose calculation unit 50.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 2, 2022
    Assignee: HITACHI, LTD.
    Inventors: Yuichiro Ueno, Takahiro Tadokoro, Shuichi Hatakeyama, Yasushi Nagumo, Katsunori Ueno, Kouichi Okada
  • Publication number: 20220236430
    Abstract: A radiation monitoring device realizes a high measurement function. Therefore, a radiation monitoring device includes: a radiation detection unit including a phosphor that emits light by incident radiation; a photodetector that converts a single photon or a photon group having a plurality of the single photons generated by the radiation detection unit into an electric pulse signal; and an analysis unit that analyzes the electric pulse signal. The phosphor emits light based on a plurality of light emission phenomena having different decay time constants. The analysis unit includes: a signal discrimination circuit that discriminates the electric pulse signal output from the photodetector; a dose rate calculation circuit that calculates a dose rate of the radiation based on a count rate of the discriminated electric pulse signal; and an application energy calculation circuit that calculates application energy of the radiation based on a peak value of the discriminated electric pulse signal.
    Type: Application
    Filed: May 18, 2020
    Publication date: July 28, 2022
    Inventors: Shuichi HATAKEYAMA, Kouichi OKADA, Katsunori UENO, Takahiro TADOKORO, Yuichiro UENO, Tooru SHIBUTANI, Keisuke SASAKI
  • Publication number: 20220208409
    Abstract: A radionuclide production method and system makes it possible to separate a target radionuclide generated by irradiation with a radioactive ray, and to reduce the generation of a radioactive waste along with the separation. The radionuclide production method includes irradiating, with a radioactive ray, a target material in which a starting material nuclide is present, to generate a radionuclide; and eluting the radionuclide into a liquid by bringing the target material into contact with the liquid. The radionuclide production system includes a target material having a starting material nuclide; an irradiation unit for the target material that generates a radionuclide; and an elution unit that elutes the radionuclide into a liquid by bringing the target material into contact with the liquid. For both the radionuclide production method and system, the target material is a porous body or a granular material through which the liquid is passable.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 30, 2022
    Inventors: Yuuko KANI, Takahiro TADOKORO, Yuichiro UENO
  • Publication number: 20220199277
    Abstract: An object of the invention is to efficiently produce a radionuclide. While a fluid containing a raw material is circulated along a circulation passage, a first radionuclide is generated in the fluid from the raw material by irradiating the fluid with radiation rays midway along the circulation passage. Further, while the fluid is circulated along the circulation passage, a substance containing at least a part of the first radionuclide and a second radionuclide generated from the first radionuclide is taken out from the fluid, and the fluid containing the remaining raw material is returned to the circulation passage again for circulation.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 23, 2022
    Inventors: Takahiro TADOKORO, Yuichiro UENO, Yuuko KANI
  • Publication number: 20220035055
    Abstract: A radiation monitor includes a radiation detection unit detecting radiation, and an optical fiber transmitting photons emitted from a light emitting element of the radiation detection unit, wherein the radiation detection unit includes a first light emitting element generating a photon in response to incident radiation, a chemical compound part having chemical compounds which generate charged particles by nuclear reactions with incident neutrons, and a second light emitting element being located between the first light emitting element and the chemical compound part and generating a photon in response to radiation.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 3, 2022
    Inventors: Takahiro TADOKORO, Yuichiro UENO, Katsunori UENO, Kouichi OKADA, Shuichi HATAKEYAMA, Yasushi NAGUMO, Tooru SHIBUTANI, Keisuke SASAKI, Akira OOZONE
  • Patent number: 11231507
    Abstract: A screw compressor includes a screw rotor, a casing, and a fluid supply portion to supply fluid in a membrane form into a compression chamber in the casing. The screw rotor has a male and female rotors. A male bore covering the male rotor and a female bore covering the female rotor are formed on the inner surface of the casing. An intersection line, on a higher pressure side, of the male and female bores is defined as a compression cusp. In a bore development view, a trajectory made by the first intersection of an extension line of a female lobe ridge and a male lobe ridge being moved, along with the rotation of the male and female rotors, is defined as a trajectory line. An opening of the fluid supply section to the compression chamber is positioned between the compression cusp and the trajectory line.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 25, 2022
    Assignee: HITACHI, LTD.
    Inventors: Shuichi Hatakeyama, Takahiro Tadokoro, Yuichiro Ueno, Yasushi Nagumo, Katsunori Ueno, Kouichi Okada
  • Patent number: 11142057
    Abstract: A drive unit includes a drive source, a case which is connected to the drive source and accommodates an electric motor, a control device which is mounted on an upper surface of the case and controls the electric motor, and an auxiliary machine placed on an upper surface of the drive source. The drive source and the control device are connected by a reinforcing member, and the reinforcing member is arranged so as to surround at least a part of the auxiliary machine in a top view. According to the drive unit, the vibration of the control device can be suppressed, and the auxiliary machine is protected while the number of parts is reduced.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: October 12, 2021
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Daisuke Hanaoka, Yuichiro Ueno
  • Patent number: 11131779
    Abstract: The present invention includes: a radiation detecting unit including a fluorescent body expressed by the formula ATaO4: B, C (in the formula, A is selected from at least one kind of element from among rare-earth elements involving 4f-4f transitions, B is selected from at least one kind of element, different from A, from among rare-earth elements involving 4f-4f transitions, and C is selected from at least one kind of element from among rare-earth elements involving 5d-4f transitions); an optical fiber that transmits photons generated by the fluorescent body; a light detector that converts the photons transmitted via the optical fiber 3 one by one into electrical pulse signals; a counter that counts the number of electrical pulse signals converted by the light detector; an analysis and display device 6 that obtains a radiation dose rate on the basis of the number of electrical pulse signals counted by the counter.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 28, 2021
    Assignee: HITACHI, LTD.
    Inventors: Shuichi Hatakeyama, Takahiro Tadokoro, Yuichiro Ueno, Yasushi Nagumo, Katsunori Ueno, Kouichi Okada
  • Publication number: 20210208287
    Abstract: A screw compressor includes a screw rotor, a casing, and a fluid supply portion to supply fluid in a membrane form into a compression chamber in the casing. The screw rotor has a male and female rotors. A male bore covering the male rotor and a female bore covering the female rotor are formed on the inner surface of the casing. An intersection line, on a higher pressure side, of the male and female bores is defined as a compression cusp. In a bore development view, a trajectory made by the first intersection of an extension line of a female lobe ridge and a male lobe ridge being moved, along with the rotation of the male and female rotors, is defined as a trajectory line. An opening of the fluid supply section to the compression chamber is positioned between the compression cusp and the trajectory line.
    Type: Application
    Filed: May 16, 2019
    Publication date: July 8, 2021
    Inventors: Shuichi HATAKEYAMA, Takahiro TADOKORO, Yuichiro UENO, Yasushi NAGUMO, Katsunori UENO, Kouichi OKADA
  • Patent number: 10967201
    Abstract: A radiation monitor 1 includes a light-emitting unit 10 which generates light having an intensity depending on an amount of an incident radiation, an optical fiber 20 which sends a photon generated by the light-emitting unit 10, a photoelectric converter 30 which transmits one electric pulse to one sent photon, a dose calculation device 40 which counts the electric pulse amplified by the photoelectric converter 30 and converts the counted value of the measured electric pulses into a dose of the radiation, and a display device 50. The dose calculation device 40 counts the electric signals converted from the photon by the photoelectric converter 30 to calculate a counting rate, and stops the counting when the counting rate exceeds a predetermined threshold, and performs counting when the counting rate is less than the threshold.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 6, 2021
    Assignee: HITACHI, LTD.
    Inventors: Yuichiro Ueno, Takahiro Tadokoro, Yasushi Nagumo, Shuichi Hatakeyama, Katsunori Ueno, Kouichi Okada
  • Patent number: 10908301
    Abstract: A radiation monitor according to the present invention includes: a radiation sensing unit which includes phosphors emitting a photon with respect to an incident radiation; and a photon sending unit which sends the photon emitted from the phosphors of the radiation sensing unit, wherein the phosphors form a multilayer structure including a first phosphor and a second phosphor, and a photon absorbing layer absorbing a photon emitted from a phosphor is provided between the first phosphor and the second phosphor.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: February 2, 2021
    Assignee: HITACHI, LTD.
    Inventors: Shuichi Hatakeyama, Takahiro Tadokoro, Yuichiro Ueno, Yasushi Nagumo, Katsunori Ueno, Kouichi Okada
  • Patent number: 10877167
    Abstract: Provided is a radiation monitor, including: a radiation detection unit which includes a radiation detection element, the radiation detection element emitting light of a predetermined light emission wavelength; a light emission unit which emits light of a wavelength different from the light emission wavelength; a wavelength selection unit which passes the light of the light emission wavelength, and is set to a first mode to block the light from the light emission unit; an optical transmission line which transmits the light; a light detection unit which converts the light passing through the wavelength selection unit into an electric pulse; and a control unit which measures a count rate of the electric pulse, and determines whether at least the light emission unit is degraded on the basis of the count rate and a light intensity of the light emission unit.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 29, 2020
    Assignee: HITACHI, LTD.
    Inventors: Takahiro Tadokoro, Katsunori Ueno, Yuichiro Ueno, Kouichi Okada, Shuichi Hatakeyama, Yasushi Nagumo, Yoshinobu Sakakibara, Toru Shibutani, Takahiro Itou
  • Publication number: 20200361298
    Abstract: A drive unit includes a drive source, a case which is connected to the drive source and accommodates an electric motor, a control device which is mounted on an upper surface of the case and controls the electric motor, and an auxiliary machine placed on an upper surface of the drive source. The drive source and the control device are connected by a reinforcing member, and the reinforcing member is arranged so as to surround at least a part of the auxiliary machine in a top view. According to the drive unit, the vibration of the control device can be suppressed, and the auxiliary machine is protected while the number of parts is reduced.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Daisuke HANAOKA, Yuichiro UENO
  • Patent number: 10787083
    Abstract: A vehicle includes an electric motor, a storage battery which supplies power to the electric motor, and a power line which configures a power transmission path between the electric motor and the storage battery. The power line is arranged to extend in a front-rear direction of the vehicle along a bottom surface of the vehicle. A part of the power line is covered by a protection member from below with a gap between the power line and the bottom surface. A fixing point of the protection member to the bottom surface is positioned on a front side of the protection member and on an outer side of the protection member in a vehicle width direction.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: September 29, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Seiji Isotani, Yuichiro Ueno, Kenta Watanabe, Hironobu Yamano, Naoki Shibata
  • Publication number: 20200278458
    Abstract: Provided is a radiation monitor and the like capable of appropriately measuring radiation. A radiation monitor (100) includes: radiation detection units (11, 12); optical fibers (13p, 13q) that transmit light generated by a plurality of radiation detection elements (11a, 12a) to merge; a light detection unit (14) that converts the light after merging guided to the light detection unit into an electric pulse; a measurement device (15) that calculates a dose rate of radiation based on a count rate of the electric pulses; and an analysis/display device (16). Housings (11b, 12b) include a housing (11b) made of a first material and another housing (12b) made of a second material.
    Type: Application
    Filed: August 30, 2018
    Publication date: September 3, 2020
    Inventors: Takahiro TADOKORO, Yuichiro UENO, Katsunori UENO, Kouichi OKADA, Shuichi HATAKEYAMA, Yasushi NAGUMO, Takahiro ITOU, Yoshinobu SAKAKIBARA
  • Patent number: 10751553
    Abstract: A radiation therapy apparatus capable of improving the accuracy of a dose distribution includes an X-ray generation device that is provided at an arm portion of a rotation gantry, a radiation detector that is insertable into the body of a patient, a dose calculation device, and a feedback control device. An X-ray generated due to collision of an electron beam with a target in the X-ray generation device is applied to an affected part (cancer) of a patient on a bed. The radiation detector which is insertable into the body detects the X-ray applied to the affected part so as to output a photon to obtain a dose rate and a dose based thereon. The feedback control device either controls the X-ray generation device such that the obtained dose becomes a set dose or controls the radiation generation device such that the obtained dose rate becomes a set dose rate.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: August 25, 2020
    Assignee: HITACHI, LTD.
    Inventors: Yuichiro Ueno, Takahiro Tadokoro, Yasushi Nagumo, Katsunori Ueno, Kouichi Okada, Shuichi Hatakeyama