Patents by Inventor Yukihiro Oishi

Yukihiro Oishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170283915
    Abstract: A magnesium alloy contains, in mass %, from 1% to 12% inclusive of Al and from 0.1% to 5% inclusive of Mn and has a structure in which particles of compounds containing Al and Mn are dispersed. The average diameter of the particles of the compounds is from 0.3 ?m to 1 ?m inclusive, and the area ratio of the particles of the compounds is from 3.5% to 25% inclusive.
    Type: Application
    Filed: September 24, 2015
    Publication date: October 5, 2017
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro OISHI, Nozomu KAWABE, Michimasa MIYANAGA, Eisuke HIRO
  • Patent number: 9752220
    Abstract: There are provided a magnesium alloy coil stock having good flatness and a method for producing the magnesium alloy coil stock, and a magnesium alloy structural member that uses the coil stock and a method for producing the magnesium alloy structural member. The coil stock is obtained by coiling a sheet composed of a magnesium alloy in a cylindrical shape, and the internal diameter of the coil stock is 1000 mm or less. The coil stock can be produced by rolling a cast material obtained by subjecting a magnesium alloy to continuous casting, subjecting the rolled sheet to warm leveling, and coiling the worked sheet in a cylindrical shape while the temperature just before coiling is decreased to 100° C. or less.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 5, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiko Kitamura, Ryuichi Inoue, Nobuyuki Mori, Yukihiro Oishi, Osamu Mizuno, Nozomu Kawabe
  • Patent number: 9604267
    Abstract: There are provided a method for producing a magnesium alloy sheet having good press formability and a magnesium alloy coil stock obtained by coiling the magnesium alloy sheet. After a raw material sheet 1 composed of a magnesium alloy is preheated to 280° C. or less, the heated raw material sheet 1 is rolled with a reduction roll 3 and the obtained long rolled sheet is coiled. The surface temperature of the reduction roll 3 is set to be 230° C. or more and 290° C. or less. The preheating, rolling, and coiling are repeatedly performed in a continuous manner. By setting both the temperatures of the raw material sheet 1 and reduction roll 3 to be certain temperatures, the rolling property of the raw material sheet can be improved and the raw material sheet can be properly rolled in a continuous manner. In addition, a variation in temperature in the width direction of the reduction roll can be suppressed and uniform rolling can be performed, resulting in the production of a long magnesium alloy sheet.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 28, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Nobuyuki Mori, Yukihiro Oishi
  • Patent number: 9598749
    Abstract: Provided are a rolled Mg alloy material whose mechanical properties are locally different in a width direction, a Mg alloy structural member produced by plastically working the rolled Mg alloy material, and a method for producing the rolled Mg alloy material. The method for producing a rolled Mg alloy material includes rolling a Mg alloy material with a reduction roll. The reduction roll has three or more regions in the width direction. The temperature is controlled in each of the regions so that a difference between a maximum temperature and a minimum temperature exceeds 10° C. in the width direction of a surface of the reduction roll. The rolled state in the width direction is varied by varying a difference in temperature over the width direction of the reduction roll. As a result, it is possible to produce a rolled Mg alloy material whose mechanical properties are locally different in the width direction.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 21, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro Oishi, Nobuyuki Mori, Ryuichi Inoue, Masaaki Fujii, Masahiko Ito, Nozomu Kawabe
  • Patent number: 9499887
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: November 22, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Patent number: 9334554
    Abstract: A magnesium alloy sheet having good press formability, a magnesium alloy structural member produced by pressing the sheet, and a method for producing a magnesium alloy sheet are provided. The magnesium alloy sheet is composed of a magnesium alloy containing Al and Mn. When a region from a surface of the alloy sheet to 30% of the thickness of the alloy sheet in a thickness direction of the magnesium alloy sheet is defined as a surface region and when a 200 ?m2 sub-region is arbitrarily selected from this surface region, the number precipitated impurity grains containing both Al and Mg and having a maximum diameter of 0.5 to 5 ?m is 5 or less. When a 50 ?m2 sub-region is arbitrarily selected from the surface region, the number of crystallized impurity grains containing both Al and Mn and having a maximum diameter of 0.1 to 1 ?m is 15 or less. In the grains of the crystallized phases, the mass ratio Al/Mn of Al to Mn is 2 to 5.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: May 10, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiko Kitamura, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 9254519
    Abstract: Provided is a composite material suitable for forming a part for continuous casting capable of producing cast materials of excellent surface quality for a long period of time and with which a molten metal is inhibited from flowing into a gap between a nozzle and a moving mold. A composite material (nozzle 1) includes a porous body 2 having a large number of pores and a filler incorporated in at least part of a portion that comes into contact with the molten metal, the portion being part of a surface portion of the porous body. The filler incorporated in the porous body 2 is at least one selected from a nitride, a carbide, and carbon.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 9, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Michimasa Miyanaga, Takeshi Uchihara, Masatada Numano, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 9222161
    Abstract: The magnesium alloy sheet disclosed herein has dispersed therein particles of an intermetallic compound containing an additive element (e.g., Al) and Mg (a typical example of which is Mg17Al12), and the ratio obtained by dividing the diffraction intensity of the main diffraction plane (4,1,1) of the intermetallic compound by the diffraction intensity of the c plane (0,0,2) of the Mg alloy phase in an XRD analysis of the surface of the sheet is 0.040 or more. The method includes: a casting step of producing a cast material composed of a magnesium alloy containing an additive element by continuous casting; a heat treatment step of holding the cast material at 400° C. or higher and then cooling the cast material at a cooling rate of 30° C/min or less to produce a heat-treated material; and a rolling step of subjecting the heat-treated material to warm rolling to produce a rolled sheet.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: December 29, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuichi Inoue, Kohji Inokuchi, Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 9222160
    Abstract: A coil material capable of contributing to an improvement of the productivity of a high-strength magnesium alloy sheet and a method for manufacturing the coil material are provided. Regarding the method for manufacturing a coil material through coiling of a sheet material formed from a metal into the shape of a cylinder, so as to produce the coil material, the sheet material is a cast material of a magnesium alloy discharged from a continuous casting machine and the thickness t (mm) thereof is 7 mm or less. The sheet material 1 is coiled with a coiler while the temperature T (° C.) of the sheet material 1 just before coiling is controlled to be a temperature at which the surface strain ((t/R)×100) represented by the thickness t and the bending radius R (mm) of the sheet material 1 becomes less than or equal to the elongation at room temperature of the sheet material 1.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: December 29, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masatada Numano, Michimasa Miyanaga, Takeshi Uchihara, Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20150152527
    Abstract: Provided are a magnesium alloy sheet having excellent formability in plastic forming, such as press forming, and a magnesium alloy structural member. The magnesium alloy sheet is obtained by subjecting a magnesium alloy to rolling and has a cross section parallel to the thickness direction of the magnesium alloy sheet, in which, when the length of the major axis and the length of the minor axis of each of crystal grains in the cross section are determined, an aspect ratio is defined as the ratio of the length of the major axis to the length of the minor axis (length of major axis/length of minor axis), and crystal grains having an aspect ratio of 3.85 or more are defined as elongated grains, the area fraction of the elongated grains in the cross section is 3% to 20%.
    Type: Application
    Filed: June 11, 2013
    Publication date: June 4, 2015
    Inventors: Ryuichi Inoue, Takahiko Kitamura, Nobuyuki Mori, Yukihiro Oishi, Nozomu Kawabe, Motonori Nakamura, Mitsutaka Tsubokura, Hiroyuki Fujioka, Mari Sogabe
  • Patent number: 9045816
    Abstract: It is an object of the invention to provide a magnesium welding wire excellent in surface cleanliness and a method for manufacturing the same. A welding wire according to the invention can be manufactured by drawing a base material such as an extruded material made of pure magnesium or a magnesium-based alloy and, after then, by shaving the surface of the thus drawn wire. Execution of the shaving operation makes it possible not only to effectively remove a lubricant and a coating used in the drawing operation but also to effectively remove an oxide generated during the drawing operation. Thanks to this, the thus obtained welding wire is excellent in surface cleanliness. As a lubricant to be used in the drawing operation, preferably, there may be used an oil lubricant or a wet-type lubricant which can be removed easily by a cleaning operation or by a grease removing treatment.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: June 2, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20150017057
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 15, 2015
    Inventors: Ryuichi INOUE, Nozomu KAWABE, Nobuyuki MORI, Masatada NUMANO, Junichi MATSUMOTO, Motonori NAKAMURA, Masayuki NISHIZAWA, Atsushi KIMURA, Yukihiro OISHI
  • Patent number: 8852363
    Abstract: The invention offers a magnesium alloy sheet material having excellent plastic processibility and rigidity and a magnesium alloy formed body having excellent rigidity. The sheet material has magnesium alloy that forms the matrix containing hard particles. The region from the surface of the sheet material to a position away from the surface by 40% of the thickness of the sheet material is defined as the surface region, and the remaining region as the center region. Hard particles existing in the center region have a maximum diameter of more than 20 ?m and less than 50 ?m, and hard particles existing in the surface region have a maximum diameter of 20 ?m or less. Because the hard particles existing at the surface side are fine particles, they are less likely to become the starting point of cracking or another defect at the time of plastic processing. Because the hard particles existing in the center region are coarse, they can increase the rigidity of the sheet material.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatada Numano, Nozomu Kawabe, Yukihiro Oishi, Nobuyuki Mori, Nobuyuki Okuda, Ryuichi Inoue
  • Patent number: 8828158
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Patent number: 8820614
    Abstract: The method of producing a magnesium alloy joined part has the following steps: a joining step of joining a reinforcing material made of metal to a plate material made of magnesium alloy without allowing an organic material to remain at the joined portion and a plastic-working step of performing plastic working on the plate material to which the reinforcing material is joined. A desirable means of joining the reinforcing material to the plate material can be to use an inorganic adhesive. Because the magnesium alloy joined part is formed by a structure in which the reinforcing material is joined to the plate material, in comparison with the case where the reinforcing material is formed by machining or the like, the magnesium alloy structural member can be obtained with high production efficiency.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masatada Numano, Ryuichi Inoue, Nobuyuki Okuda, Nozomu Kawabe, Koji Mori, Nobuyuki Mori, Yukihiro Oishi, Takahiko Kitamura
  • Patent number: 8657973
    Abstract: Magnesium-based alloy wire excelling in strength and toughness, its method of manufacture, and springs in which the magnesium-based alloy wire is utilized are made available. The magnesium-based alloy wire contains, in mass %, 0.1 to 12.0% Al, and 0.1 to 1.0% Mn, and is provided with the following constitution. Diameter d that is 0.1 mm or more and 10.0 mm or less; length L that is 1000d or more; tensile strength that is 250 MPa or more; necking-down rate that is 15% or more; and elongation that is 6% or more. Such wire is produced by draw-forming it at a working temperature of 50° C. or more, and by heating it to a temperature of 100° C. or more and 300° C. or less after the drawing process has been performed.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: February 25, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo (SEI) Steel Wire Corp.
    Inventors: Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20130333809
    Abstract: There are provided a magnesium alloy material and a method for producing the magnesium alloy material. In a magnesium (Mg) alloy material (e.g., Mg alloy sheet) having a sheet-shaped portion with a thickness of 1.5 mm or more, when a region having ¼ the thickness of the sheet-shaped portion in a thickness direction from a surface of the sheet-shaped portion is defined as a surface region and a remaining region is defined as an internal region, the ratio OF/OC of the basal plane peak ratio OF in the surface region to the basal plane peak ratio OC (degree of orientation of (002) planes) in the internal region satisfies 1.05<OF/OC. A sheet-shaped Mg alloy material is obtained by performing rolling on a twin-roll continuous cast material with multiple passes at a reduction ratio of each pass of 25% or less.
    Type: Application
    Filed: February 23, 2012
    Publication date: December 19, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro Oishi, Nobuyuki Mori, Ryuichi Inoue, Nozomu Kawabe
  • Publication number: 20130337282
    Abstract: There are provided a magnesium alloy material and a method for producing the magnesium alloy material. In a magnesium (Mg) alloy material having a sheet-shaped portion with a thickness of 1.5 mm or more, when a region having ¼ the thickness of the sheet-shaped portion in a thickness direction from a surface of the sheet-shaped portion is defined as a surface region and a remaining region is defined as an internal region, the ratio OF/OC of the basal plane peak ratio OF in the surface region to the basal plane peak ratio OC (degree of orientation of (002) planes) in the internal region satisfies 0.95?OF/OC?1.05. A sheet-shaped Mg alloy material is obtained by performing at least one pass of the rolling at a reduction ratio of 25% or more and the remaining passes of the rolling at a reduction ratio of 10% or more.
    Type: Application
    Filed: February 23, 2012
    Publication date: December 19, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro Oishi, Nobuyuki Mori, Ryuichi Inoue, Nozomu Kawabe
  • Publication number: 20130323523
    Abstract: Provided are a rolled Mg alloy material which has a wide width and whose mechanical properties are uniform in a width direction, a Mg alloy structural member produced by plastically working the rolled Mg alloy material, and a method for producing the rolled Mg alloy material. The method for producing a rolled Mg alloy material includes rolling a Mg alloy material with a reduction roll. The Mg alloy material has a width of 1,000 mm or more, and the reduction roll has three or more regions in the width direction. The temperature is controlled in each of the regions so that a difference between a maximum temperature and a minimum temperature is 10° C. or less in the width direction of a surface of the reduction roll. The variation in the rolled state in the width direction can be reduced by reducing a difference in temperature over the width direction of the reduction roll.
    Type: Application
    Filed: February 13, 2012
    Publication date: December 5, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro Oishi, Nobuyuki Mori, Ryuichi Inoue, Masaaki Fujii, Masahiko Ito, Nozomu Kawabe
  • Publication number: 20130315778
    Abstract: Provided are a rolled Mg alloy material whose mechanical properties are locally different in a width direction, a Mg alloy structural member produced by plastically working the rolled Mg alloy material, and a method for producing the rolled Mg alloy material. The method for producing a rolled Mg alloy material includes rolling a Mg alloy material with a reduction roll. The reduction roll has three or more regions in the width direction. The temperature is controlled in each of the regions so that a difference between a maximum temperature and a minimum temperature exceeds 10° C. in the width direction of a surface of the reduction roll. The rolled state in the width direction is varied by varying a difference in temperature over the width direction of the reduction roll. As a result, it is possible to produce a rolled Mg alloy material whose mechanical properties are locally different in the width direction.
    Type: Application
    Filed: February 13, 2012
    Publication date: November 28, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro Oishi, Nobuyuki Mori, Ryuichi Inoue, Masaaki Fujii, Masahiko Ito, Nozomu Kawabe