Patents by Inventor Yukinori Sakashita

Yukinori Sakashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933804
    Abstract: In a case where a dispensing tip is imaged from below, liquid attached to the tip falls downward and contaminates an imaging mechanism. An automatic analyzer includes: a buffer that has a hole for holding a tip for dispensing, the hole passing through the tip; a probe for dispensing having a tip to which the tip is attached; an imaging unit that images the tip; and a controller that controls the tip such that the tip is mounted on the probe by pressing the probe against the tip that passes through the hole to be held by the buffer, in which the imaging unit is disposed to image the tip from an upper side to a lower side in a gravity direction.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 19, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takahiro Kumagai, Kazuhiro Noda, Yukinori Sakashita
  • Publication number: 20230366902
    Abstract: To provide an automatic analyzer that can be designed with a high degree of freedom in accordance with cooling performance by cooling air in a space separated from a reagent refrigerator and suppresses the occurrence of dew condensation in the reagent refrigerator. An automatic analyzer has a reagent refrigerator 20 that cools a reagent container 21 by using a refrigerant, a refrigerant cooling unit 201 that cools the refrigerant to circulate in the device, an air blowing unit 204 that takes in air fed to the reagent refrigerator 20 from the outside of the device, and a blowing air cooling unit 202 that cools air flowing from the air blowing unit 204 by using the refrigerant. The inside of the reagent refrigerator is positively pressurized by the blowing air that is taken in from the outside by the air blowing unit and is cooled by the blowing air cooling unit 202 to suppress the occurrence of dew condensation.
    Type: Application
    Filed: August 18, 2021
    Publication date: November 16, 2023
    Inventors: Shun KURIKI, Yukinori SAKASHITA, Kazuhiro NODA, Nobuya FUKUDA
  • Publication number: 20230251253
    Abstract: An electrochemiluminescence method of detecting an analyte in a liquid sample and a corresponding analysis system. An analyte in a liquid sample is detected by first providing a receptacle containing a fluid comprising protein coated magnetic microparticles to a stirring unit. Stirring of the fluid is necessary since the density of the microparticles is usually higher than the density of the buffer fluid. Thus the microparticles tend to deposit on the bottom of the receptacle leading to an aggregation of the microparticles because of weak interactions. To obtain representative measurements a homogeneous distribution of the microparticles in the buffer fluid is necessary to ensure a constant concentration of microparticles for each analysis cycle. It is further necessary to provide disaggregation of the microparticles, which is also realized by stirring the fluid. Stirring is conducted with a rotational frequency that is adapted to the amount of fluid to be stirred.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Applicants: Roche Diagnostics Operations, Inc., Hitachi High-Tech Corporation
    Inventors: Ralf Kraus, Oliver Larbolette, Friedrich Staebler, Yoshihiro Yamashita, Yukinori Sakashita, Shinya Matsuoka, Michihiro Saito, Taku Sakazume, Katsuaki Takahashi
  • Patent number: 11703504
    Abstract: An electrochemiluminescence method of detecting an analyte in a liquid sample and a corresponding analysis system. An analyte in a liquid sample is detected by first providing a receptacle containing a fluid comprising protein coated magnetic microparticles to a stirring unit. Stirring of the fluid is necessary since the density of the microparticles is usually higher than the density of the buffer fluid. Thus the microparticles tend to deposit on the bottom of the receptacle leading to an aggregation of the microparticles because of weak interactions. To obtain representative measurements a homogeneous distribution of the microparticles in the buffer fluid is necessary to ensure a constant concentration of microparticles for each analysis cycle. It is further necessary to provide disaggregation of the microparticles, which is also realized by stirring the fluid. Stirring is conducted with a rotational frequency that is adapted to the amount of fluid to be stirred.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 18, 2023
    Assignees: ROCHE DIAGNOSTICS OPERATIONS, INC., HITACHI HIGH-TECH CORPORATION
    Inventors: Ralf Kraus, Oliver Larbolette, Friedrich Staebler, Yoshihiro Yamashita, Yukinori Sakashita, Shinya Matsuoka, Michihiro Saito, Taku Sakazume, Katsuaki Takahashi
  • Publication number: 20230061292
    Abstract: Provided is an automatic analyzer capable of reducing risks such as infection, injury, and damage to the device caused by manual operation of a user. In the automatic analyzer according to the present disclosure, an unused vessel holding unit is configured to be able to hold a cleaning member that cleans a hole for mounting a reaction vessel, and a reaction vessel transport unit or a specimen probe picks up the cleaning member from the unused vessel holding unit, transports the cleaning member to the reaction vessel mounting unit, and inserts and removes the cleaning member into and from the hole, thereby cleaning the inner surface of the hole.
    Type: Application
    Filed: January 21, 2021
    Publication date: March 2, 2023
    Inventors: Shun KURIKI, Kazuhiro NODA, Yukinori SAKASHITA
  • Patent number: 11467174
    Abstract: The purpose of the present invention is to constantly keep a state in a flow cell steady by filling a detection flow channel with a liquid. The configuration of the present invention for solving the aforementioned problem is as follows. Specifically, the present invention is an automatic analysis apparatus provided with a detection unit including a flow cell that accommodates a liquid serving as an analysis subject; a suction nozzle that is positioned upstream of the flow cell and that sucks the liquid to be introduced into the flow cell; a pump that is positioned downstream of the flow cell and that supplies the liquid to the flow cell; flow channels that connect the flow cell, the suction nozzle, and the pump; a power source; and a power-cutting instructing unit that gives an instruction to cut the power supply at least to the pump.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: October 11, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Yoshihiro Kabe, Yukinori Sakashita, Katsuhiro Kambara, Taku Sakazume, Tatsuya Fukugaki
  • Publication number: 20220317140
    Abstract: Provided is a reagent cooler that prevents occurrence of condensation and further uniforms a temperature in the cooler with low power consumption and a simple structure. The reagent cooler includes a refrigerant pipe that is disposed inside an outer wall of the reagent cooler 103 and circulates a refrigerant inside the outer wall; a blowing pipe 109 that is disposed inside the outer wall and guides outside air existing outside the reagent cooler to inside of the reagent cooler; and a blowing unit 114 that is disposed at the blowing pipe and diffuses the outside air into the inside of the reagent cooler through the blowing pipe. With the outside air cooled by the outer wall and taken into the inside of the reagent cooler, the reagent cooler is positively pressurized and the internal temperature is made uniform.
    Type: Application
    Filed: February 25, 2020
    Publication date: October 6, 2022
    Inventors: Nobuya FUKUDA, Kazuhiro NODA, Yukinori SAKASHITA
  • Publication number: 20210318350
    Abstract: In a case where a dispensing tip is imaged from below, liquid attached to the tip falls downward and contaminates an imaging mechanism. An automatic analyzer includes: a buffer that has a hole for holding a tip for dispensing, the hole passing through the tip; a probe for dispensing having a tip to which the tip is attached; an imaging unit that images the tip; and a controller that controls the tip such that the tip is mounted on the probe by pressing the probe against the tip that passes through the hole to be held by the buffer, in which the imaging unit is disposed to image the tip from an upper side to a lower side in a gravity direction.
    Type: Application
    Filed: May 29, 2019
    Publication date: October 14, 2021
    Applicant: HITACHI HIGH-TECH CORPORATION
    Inventors: Takahiro Kumagai, Kazuhiro Noda, Yukinori Sakashita
  • Patent number: 11106680
    Abstract: Example implementations described herein are directed to systems and methods for managing a relationship between real-time analysis processes and applications, where each of the applications are configured to utilize output from one or more of the corresponding real-time analysis processes. In an example implementation, resource adjustment is applied to the real-time analysis process based on a determined priority.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: August 31, 2021
    Assignee: HITACHI, LTD.
    Inventors: Hiroaki Shikano, Yukinori Sakashita
  • Patent number: 10753953
    Abstract: Provided are an automated analyzer for analyzing a substance contained in an unknown sample and a liquid reservoir, the analyzer and the reservoir being capable of saving users' operation without remarkably increasing the number of components. A flow path outlet of an overflow portion of the liquid reservoirs projects closer to the inner circumferential side of a drain flow path than to an inner circumferential surface side of an outer wall of the drain flow path serving as a destination to which liquid overflows. In addition, the flow path outlet projects so as to come into contact with an outer wall of the inner pipe. The flow path outlet of the overflow portion projects into the drain flow path so as to be located below an upper end of the outer wall of the drain flow path.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: August 25, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Reika Kuroda, Kenta Imai, Yukinori Sakashita, Yoshihiro Yamashita
  • Patent number: 10670618
    Abstract: Provided is an automated analysis device equipped with a lid opening/closing mechanism with which it is possible to selectively open or close lids of a plurality of reagent containers, as well as to close all of the lids of the plurality of reagent containers, regardless of their current open/closed state. Each of a plurality of hooks 102 rotatably linked to a hook base part 104 has: a claw portion 203 which, when oriented to engage with a lid 101, causes force to act on the lid 101 in the opening direction; a basal part 202 which, when oriented to engage with the lid 101, causes force to act on the lid in the closing direction; and a closing protrusion 201 which, when oriented not to engage with the lid 101, causes force to act on the lid in the closing direction.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: June 2, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takushi Miyakawa, Kazuhiro Noda, Yukinori Sakashita
  • Patent number: 10605818
    Abstract: The purpose of the present invention is to stably hold the lid of a reagent container in an open state without being influenced by reagent container lid opening and closing operations. An automated analyzer is provided with reagent containers 116-118, a cassette 100, a reagent container lid opening and closing mechanism, and a lid holding mechanism 131. The reagent containers 116-118 accommodate the reagent and have lids 101a-101c that pivot about a pivot point. The reagent containers 116-118 are mounted on the cassette 100. The reagent container lid opening and closing mechanism opens and closes the lids 101a-101c. The lid holding mechanism 131 holds the lids 101a opened by the reagent container lid opening and closing mechanism.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: March 31, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kazuhiro Noda, Yukinori Sakashita, Takushi Miyakawa, Katsuhiro Kambara
  • Publication number: 20200003768
    Abstract: An electrochemiluminescence method of detecting an analyte in a liquid sample and a corresponding analysis system. An analyte in a liquid sample is detected by first providing a receptacle containing a fluid comprising protein coated magnetic microparticles to a stirring unit. Stirring of the fluid is necessary since the density of the microparticles is usually higher than the density of the buffer fluid. Thus the microparticles tend to deposit on the bottom of the receptacle leading to an aggregation of the microparticles because of weak interactions. To obtain representative measurements a homogeneous distribution of the microparticles in the buffer fluid is necessary to ensure a constant concentration of microparticles for each analysis cycle. It is further necessary to provide disaggregation of the microparticles, which is also realized by stirring the fluid. Stirring is conducted with a rotational frequency that is adapted to the amount of fluid to be stirred.
    Type: Application
    Filed: September 5, 2019
    Publication date: January 2, 2020
    Applicants: Roche Diagnostics Operations, Inc., Hitachi High-Technologies Corporation
    Inventors: Ralf Kraus, Oliver Larbolette, Friedrich Staebler, Yoshihiro y Yamashita, Yukinori Sakashita, Shinya Matsuoka, Michihiro Saito, Taku Sakazume, Katsuaki Takahashi
  • Patent number: 10422797
    Abstract: An electrochemiluminescence method of detecting an analyte in a liquid sample and a corresponding analysis system. An analyte in a liquid sample is detected by first providing a receptacle containing a fluid comprising protein coated magnetic microparticles to a stirring unit. Stirring of the fluid is necessary since the density of the microparticles is usually higher than the density of the buffer fluid. Thus the microparticles tend to deposit on the bottom of the receptacle leading to an aggregation of the microparticles because of weak interactions. To obtain representative measurements a homogeneous distribution of the microparticles in the buffer fluid is necessary to ensure a constant concentration of microparticles for each analysis cycle. It is further necessary to provide disaggregation of the microparticles, which is also realized by stirring the fluid. Stirring is conducted with a rotational frequency that is adapted to the amount of fluid to be stirred.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: September 24, 2019
    Assignees: ROCHE DIAGNOSTICS OPERATIONS, INC., HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Ralf Kraus, Oliver Larbolette, Friedrich Staebler, Yoshihiro Yamashita, Yukinori Sakashita, Shinya Matsuoka, Michihiro Saito, Taku Sakazume, Katsuaki Takahashi
  • Publication number: 20190257719
    Abstract: There is provided an abnormal-state detection system including: a processing execution unit that executes an application which performs information processing based on the received data after receiving the data sent from factory equipment; a data relation generation unit that generates a data association result which is information indicating the presence of relation between the data; an abnormal-state determination unit that determines whether or not the factory equipment is in an abnormal state which is a state other than a normal state which is a state where manufacturing of a product is actually performed, based on the data association result; a control unit that performs a control for preventing an influence of the application on the information processing based on a result of the determination; and a tag unit for tagging the data if the factory equipment is determined to be in the abnormal state.
    Type: Application
    Filed: September 12, 2018
    Publication date: August 22, 2019
    Applicant: HITACHI, LTD.
    Inventors: Yoji Ozawa, Yukinori Sakashita
  • Patent number: 10307782
    Abstract: The nozzle cleaning method includes the following steps: a first cleaning step in which a pre-pressurization liquid is discharged from a dispensing nozzle in a first cleaning position so as to clean the inside wall thereof and a first cleaning liquid is applied to the outside wall of the dispensing nozzle so as to clean said outside wall; a second cleaning step in which a second cleaning liquid is suctioned into the dispensing nozzle in a second cleaning position so as to clean the inside wall thereof; and a third cleaning step in which the second cleaning liquid is discharged from the dispensing nozzle in a third cleaning position so as to clean the inside wall thereof and a third cleaning liquid is applied to the outside wall of the dispensing nozzle so as to clean said outside wall.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: June 4, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takushi Miyakawa, Yukinori Sakashita, Yoshihiro Yamashita, Katsuhiro Kambara
  • Publication number: 20190145997
    Abstract: The purpose of the present invention is to constantly keep a state in a flow cell steady by filling a detection flow channel with a liquid. The configuration of the present invention for solving the aforementioned problem is as follows. Specifically, the present invention is an automatic analysis apparatus provided with a detection unit including a flow cell that accommodates a liquid serving as an analysis subject; a suction nozzle that is positioned upstream of the flow cell and that sucks the liquid to be introduced into the flow cell; a pump that is positioned downstream of the flow cell and that supplies the liquid to the flow cell; flow channels that connect the flow cell, the suction nozzle, and the pump; a power source; and a power-cutting instructing unit that gives an instruction to cut the power supply at least to the pump.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 16, 2019
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Yoshihiro KABE, Yukinori SAKASHITA, Katsuhiro KAMBARA, Taku SAKAZUME, Tatsuya FUKUGAKI
  • Publication number: 20190065555
    Abstract: Example implementations described herein are directed to systems and methods for managing a relationship between real-time analysis processes and applications, where each of the applications are configured to utilize output from one or more of the corresponding real-time analysis processes. In an example implementation, resource adjustment is applied to the real-time analysis process based on a determined priority.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 28, 2019
    Inventors: Hiroaki SHIKANO, Yukinori SAKASHITA
  • Publication number: 20180267713
    Abstract: Example implementations are directed to systems and methods for how an application defines storage infrastructure. Such example implementations described herein may be used by application programmers to develop applications quickly and flexibly, without having to communicate with storage administrators to make storage infrastructure changes. In an example implementation, there is an application configured to perform storage management operations that change the storage resources allocated to the application.
    Type: Application
    Filed: March 31, 2016
    Publication date: September 20, 2018
    Inventors: Hideo SAITO, Keisuke HATASAKI, Yasutaka KONO, Yukinori SAKASHITA
  • Publication number: 20180188275
    Abstract: The purpose of the present invention is to stably hold the lid of a reagent container in an open state without being influenced by reagent container lid opening and closing operations. An automated analyzer is provided with reagent containers 116-118, a cassette 100, a reagent container lid opening and closing mechanism, and a lid holding mechanism 131. The reagent containers 116-118 accommodate the reagent and have lids 101a-101c that pivot about a pivot point. The reagent containers 116-118 are mounted on the cassette 100. The reagent container lid opening and closing mechanism opens and closes the lids 101a-101c. The lid holding mechanism 131 holds the lids 101a opened by the reagent container lid opening and closing mechanism.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 5, 2018
    Inventors: Kazuhiro NODA, Yukinori SAKASHITA, Takushi MIYAKAWA, Katsuhiro KAMBARA