Patents by Inventor Yun-feng Chang

Yun-feng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7358412
    Abstract: Disclosed is a method for making molecular sieve catalyst particles. Dried molecular sieve catalyst particles are used to make the catalyst. The dried molecular sieve catalyst particles are put into an aqueous solution and stirred to make a slurry. The slurry is dried to make the molecular sieve catalyst particles. Optionally, the dried molecular sieve catalyst particles made from the slurry are calcined.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Jeffery W. Sprinkle, Fran A. Shipley, Kenneth R. Clem
  • Publication number: 20080051615
    Abstract: A hydrocarbon conversion process for producing an aromatics product containing of benzene, toluene, xylenes, or mixtures thereof. The process is carried out by converting precursors of benzene, toluene, and xylenes that are contained in a hydrocarbon feed (C6+ non-aromatic cyclic hydrocarbons, A8+ single-ring aromatic hydrocarbons having at least one alkyl group containing two or more carbon atoms; and A9+ single-ring aromatic hydrocarbons having at least three methyl groups) to produce a product that contains an increased amount of benzene, toluene, xylenes, or combinations thereof compared to said hydrocarbon feed.
    Type: Application
    Filed: August 24, 2006
    Publication date: February 28, 2008
    Inventors: Elizabeth L. Stavens, Stephen H. Brown, J. Scott Buchanan, Yun-feng Chang, Larry L. Iaccino, Paul F. Keusenkothen, John D. Y. Ou, Randall D. Partridge
  • Patent number: 7329625
    Abstract: This invention provides a process for making an attrition resistant molecular sieve catalyst composition. The formation of highly attrition resistant catalyst particles is accomplished by initially mixing together catalyst components to form a slurry at a relatively low viscosity and high solids content. Preferably, a slurry having characteristics of high solids content and low viscosity is achieved using a rotor-stator mixer. Once the desired slurry characteristics are obtained, the slurry is dried, preferably by spray drying and calcining, to form a highly attrition resistant catalyst.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: February 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Yun-feng Chang
  • Patent number: 7312369
    Abstract: This invention provides an attrition resistant metalloaluminophosphate molecular sieve catalyst composition, methods of making the catalyst composition and processes for using the catalyst composition. The metalloaluminophosphate molecular sieve catalyst composition is highly attrition resistant in dried as well as fully calcined forms.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Alistair D. Westwood, Jeffery W. Sprinkle
  • Patent number: 7301065
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: November 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Publication number: 20070249885
    Abstract: This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry.
    Type: Application
    Filed: June 14, 2007
    Publication date: October 25, 2007
    Inventors: Yun-Feng Chang, Stephen Vaughn, Kenneth Clem, Luc Martens, Weiguo Hu
  • Publication number: 20070238911
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a molecular sieve catalyst composition of a molecular sieve, a binder and a matrix material, wherein the weight ratio of the binder to the molecular sieve is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: May 25, 2007
    Publication date: October 11, 2007
    Inventors: Yun-feng Chang, Stephen Vaughn, Luc Martens, Kenneth Clem
  • Patent number: 7273827
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a catalyst composition comprising a molecular sieve having a framework including at least [AlO4] and [PO4] tetrahedral units, at least one of a binder and a matrix material and at least one phosphorus compound separate from said molecular sieve wherein, after calcination at 760° C. for 3 hours, said catalyst composition has a microporous surface area in excess of 20% of the microporous surface area of said molecular sieve after calcination at 650° C. in nitrogen for 2 hours. The catalyst composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: September 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Luc Roger Marc Martens, Jeffrey Wayne Sprinkle, Ian Nathaniel Walker
  • Patent number: 7271123
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a molecular sieve catalyst composition of a molecular sieve, a binder and a matrix material, wherein the weight ratio of the binder to the molecular sieve is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: September 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Kenneth R. Clem
  • Publication number: 20070203385
    Abstract: This invention provides a process for manufacturing a catalyst with a desired attrition index, comprising the steps of selecting at least one molecular sieve having a morphology and size index (MSI) of from 1 to about 1000 to secure said desired attrition index of said catalyst.
    Type: Application
    Filed: January 12, 2007
    Publication date: August 30, 2007
    Inventors: Yun-feng Chang, Machteld Maria Mertens, Stephen N. Vaughn
  • Publication number: 20070197845
    Abstract: This invention provides a process for limiting the loss of catalyst particles through olefin product streams and regenerator flue gas streams exiting the reaction system. In particular, this invention provides for removing catalyst particles from the reactor using a water stream and from the regenerator using a two step separation process. The two step process involves the use of a catalyst fine separation unit.
    Type: Application
    Filed: January 10, 2007
    Publication date: August 23, 2007
    Inventors: James H. Beech, Yun-feng Chang, Michael P. Nicoletti
  • Patent number: 7241713
    Abstract: This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: July 10, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Weiguo Hu
  • Publication number: 20070149836
    Abstract: A method for recovering molecular sieve crystals from a synthesis mixture that comprises adding at least one flocculant having a certain molecular weight and a certain charge density that contribute to the acceleration of the settling rate of the molecular sieve crystals and compositions made from the method.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Yun-feng Chang, Daria Lissy
  • Patent number: 7223896
    Abstract: This invention provides processes for maintaining a desired particle size distribution in an oxygenate to olefin reaction system. In one embodiment, the invention comprises replacing lost catalyst fines with less active co-catalyst particles. By adding less active co-catalyst particles to the reaction system, desirable fluidization characteristics and hydrodynamics can be maintained without affecting the overall (or primary catalyst) performance and product selectivities. The invention is also directed to a population of catalyst particles having a desirable particle size distribution well-suited for realizing ideal fluidization and hydrodynamic characteristics.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 29, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc R. M. Martens, James R. Lattner, Rutton D. Patel, David C. Skouby, Stephen Neil Vaughn, Yun-feng Chang, Jesse F. Goellner, Mareel J. Janssen, Richard C. Senior
  • Patent number: 7214844
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a making a molecular sieve catalyst composition by forming a slurry by combining a molecular sieve, a binder and a matrix material, wherein the slurry has a pH, above or below the isoelectric point of the molecular sieve. The catalyst composition has improved attrition resistance, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Joseph E. Baumgartner, Stuart L. Soled, Kenneth R. Clem
  • Publication number: 20070100187
    Abstract: This invention provides a process for making an attrition resistant molecular sieve catalyst composition. The formation of highly attrition resistant catalyst particles is accomplished by initially mixing together catalyst components to form a slurry at a relatively low viscosity and high solids content. Preferably, a slurry having characteristics of high solids content and low viscosity is achieved using a rotor-stator mixer. Once the desired slurry characteristics are obtained, the slurry is dried, preferably by spray drying and calcining, to form a highly attrition resistant catalyst.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 3, 2007
    Inventor: Yun-feng Chang
  • Patent number: 7160831
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Publication number: 20060293176
    Abstract: A method for determining an amount of flocculant effective to recover a molecular sieve crystalline product that comprises the steps of (a) preparing a molecular sieve crystalline product mixture; (b) separating the molecular sieve crystalline product mixture into a plurality of samples; (c) mixing at least two of the plurality of samples with a quantity of flocculant to produce a plurality of flocculated samples, wherein at least two of the plurality of flocculated samples have a different ratio of flocculant to molecular sieve crystalline product mixture; (d) measuring the viscosity or zeta potential of at least two of the plurality of flocculated samples having a different ratio of flocculant to molecular sieve crystalline product mixture; (e) establishing a relationship between the quantity of flocculant and the viscosity or zeta potential measurements; and (f) determining from the relationship the amount of flocculant effective to recover the molecular sieve crystalline product.
    Type: Application
    Filed: June 14, 2006
    Publication date: December 28, 2006
    Inventors: Yun-Feng Chang, Daria Lissy
  • Patent number: 7122500
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition with a synthesized molecular sieve having been recovered using a flocculant. The formulated composition is particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Luc R. Martens, Stephen N. Vaughn
  • Publication number: 20060205587
    Abstract: This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
    Type: Application
    Filed: May 15, 2006
    Publication date: September 14, 2006
    Inventors: Yun-Feng Chang, Stephen Vaughn, Luc Martens, Kenneth Clem