Patents by Inventor Yupin Kawing Fong
Yupin Kawing Fong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6894926Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: GrantFiled: April 30, 2003Date of Patent: May 17, 2005Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6861700Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: GrantFiled: September 29, 2003Date of Patent: March 1, 2005Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Patent number: 6862218Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: GrantFiled: February 25, 2004Date of Patent: March 1, 2005Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6856546Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: GrantFiled: November 13, 2001Date of Patent: February 15, 2005Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Publication number: 20040246798Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: ApplicationFiled: March 24, 2004Publication date: December 9, 2004Inventors: Daniel C. Guterman, Yupin Kawing Fong
-
Publication number: 20040213049Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: ApplicationFiled: November 13, 2001Publication date: October 28, 2004Applicant: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Publication number: 20040165431Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: ApplicationFiled: February 25, 2004Publication date: August 26, 2004Inventors: Daniel C. Guterman, Yupin Kawing Fong
-
Publication number: 20040109362Abstract: The present invention presents a “smart verify” technique whereby multi-state memories are programmed using a verify-results-based dynamic adjustment of the multi-states verify range for sequential-state-based verify implementations. This technique can increase multi-state write speed while maintaining reliable operation within sequentially verified, multi-state memory implementations. It does so by providing “intelligent” means to minimize the number of sequential verify operations for each program/verify/lockout step of the write sequence. In an exemplary embodiment of the write sequence for the multi-state memory during a program/verify cycle sequence of the selected storage elements, at the beginning of the process only the lowest state of the multi-state range to which the selected storage elements are being programmed is checked during the verify phase.Type: ApplicationFiled: December 5, 2002Publication date: June 10, 2004Inventors: Geoffrey S. Gongwer, Daniel C. Guterman, Yupin Kawing Fong
-
Publication number: 20040063283Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: ApplicationFiled: September 29, 2003Publication date: April 1, 2004Inventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Publication number: 20040047195Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: ApplicationFiled: April 8, 2003Publication date: March 11, 2004Applicant: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6704222Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: GrantFiled: October 7, 2002Date of Patent: March 9, 2004Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Publication number: 20040042294Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: ApplicationFiled: April 30, 2003Publication date: March 4, 2004Inventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6664587Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: GrantFiled: September 5, 2002Date of Patent: December 16, 2003Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Publication number: 20030132478Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: ApplicationFiled: October 7, 2002Publication date: July 17, 2003Inventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Publication number: 20030111702Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: ApplicationFiled: September 5, 2002Publication date: June 19, 2003Inventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Publication number: 20030052360Abstract: Novel memory cells utilize source-side injection, allowing very small programming currents. If desired, to-be-programmed cells are programmed simultaneously while not requiring an unacceptably large programming current for any given programming operation. In one embodiment, memory arrays are organized in sectors with each sector being formed of a single column or a group of columns having their control gates connected in common. In one embodiment, a high speed shift register is used in place of a row decoder to serially shift in data for the word lines, with all data for each word line of a sector being contained in the shift register on completion of its serial loading. In one embodiment, speed is improved by utilizing a parallel loaded buffer register which receives parallel data from the high speed shift register and holds that data during the write operation, allowing the shift register to receive serial loaded data during the write operation for use in a subsequent write operation.Type: ApplicationFiled: August 20, 2002Publication date: March 20, 2003Inventors: Daniel C. Guterman, Gheorghe Samachisa, Yupin Kawing Fong, Eliyahou Harari
-
Publication number: 20020163838Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: ApplicationFiled: November 13, 2001Publication date: November 7, 2002Applicant: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6317363Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: GrantFiled: October 13, 2000Date of Patent: November 13, 2001Assignee: Sandisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6317364Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: GrantFiled: October 13, 2000Date of Patent: November 13, 2001Assignee: Sandisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong
-
Patent number: 6275419Abstract: Maximized multi-stage compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.Type: GrantFiled: October 13, 2000Date of Patent: August 14, 2001Assignee: SanDisk CorporationInventors: Daniel C. Guterman, Yupin Kawing Fong