Patents by Inventor Yury Yuditsky

Yury Yuditsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495579
    Abstract: A system includes a beam steering assembly configured to adjust an incident beam to form a corrected beam; a beam monitoring assembly configured to generate monitoring data for the corrected beam including one or more offset parameters of the corrected beam; and a controller configured to store one or more zero parameters of the corrected beam, calculate at least one difference between the one or more zero parameters and the one or more offset parameters of the corrected beam, determine one or more beam position adjustments of the incident beam based on the at least one difference between the one or more zero parameters and the one or more offset parameters of the corrected beam, and direct the beam steering assembly via one or more motor drivers to actuate one or more motors to adjust the incident beam to form the corrected beam.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: December 3, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Frank Li, Zhiwei Xu, Timothy Swisher, Kwan Auyeung, Yury Yuditsky
  • Patent number: 10488348
    Abstract: Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to direct pulses of light to an area on a wafer; a scanning subsystem configured to scan the pulses of light across the wafer; a collection subsystem configured to image pulses of light scattered from the area on the wafer to a sensor, wherein the sensor is configured to integrate a number of the pulses of scattered light that is fewer than a number of the pulses of scattered light that can be imaged on the entire area of the sensor, and wherein the sensor is configured to generate output responsive to the integrated pulses of scattered light; and a computer subsystem configured to detect defects on the wafer using the output generated by the sensor.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: November 26, 2019
    Assignee: KLA-Tencor Corp.
    Inventors: Anatoly Romanovsky, Ivan Maleev, Daniel Kavaldjiev, Yury Yuditsky, Dirk Woll, Stephen Biellak, Mehdi Vaez-Iravani, Guoheng Zhao
  • Publication number: 20180164228
    Abstract: Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to direct pulses of light to an area on a wafer; a scanning subsystem configured to scan the pulses of light across the wafer; a collection subsystem configured to image pulses of light scattered from the area on the wafer to a sensor, wherein the sensor is configured to integrate a number of the pulses of scattered light that is fewer than a number of the pulses of scattered light that can be imaged on the entire area of the sensor, and wherein the sensor is configured to generate output responsive to the integrated pulses of scattered light; and a computer subsystem configured to detect defects on the wafer using the output generated by the sensor.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventors: Anatoly Romanovsky, Ivan Maleev, Daniel Kavaldjiev, Yury Yuditsky, Dirk Woll, Stephen Biellak, Mehdi Vaez-Iravani, Guoheng Zhao
  • Patent number: 9915622
    Abstract: Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to direct pulses of light to an area on a wafer; a scanning subsystem configured to scan the pulses of light across the wafer; a collection subsystem configured to image pulses of light scattered from the area on the wafer to a sensor, wherein the sensor is configured to integrate a number of the pulses of scattered light that is fewer than a number of the pulses of scattered light that can be imaged on the entire area of the sensor, and wherein the sensor is configured to generate output responsive to the integrated pulses of scattered light; and a computer subsystem configured to detect defects on the wafer using the output generated by the sensor.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: March 13, 2018
    Assignee: KLA-Tencor Corp.
    Inventors: Anatoly Romanovsky, Ivan Maleev, Daniel Kavaldjiev, Yury Yuditsky, Dirk Woll, Stephen Biellak, Mehdi Vaez-Iravani, Guoheng Zhao
  • Publication number: 20170336329
    Abstract: A system includes a beam steering assembly configured to adjust an incident beam to form a corrected beam; a beam monitoring assembly configured to generate monitoring data for the corrected beam including one or more offset parameters of the corrected beam; and a controller configured to store one or more zero parameters of the corrected beam, calculate at least one difference between the one or more zero parameters and the one or more offset parameters of the corrected beam, determine one or more beam position adjustments of the incident beam based on the at least one difference between the one or more zero parameters and the one or more offset parameters of the corrected beam, and direct the beam steering assembly via one or more motor drivers to actuate one or more motors to adjust the incident beam to form the corrected beam.
    Type: Application
    Filed: April 3, 2017
    Publication date: November 23, 2017
    Inventors: Frank Li, Zhiwei Xu, Timothy Swisher, Kwan Auyeung, Yury Yuditsky
  • Patent number: 9587936
    Abstract: A wafer is moved under an inspection spot by a rotary inspection system. The system rotates the wafer about an axis of rotation and translates the wafer along a linear trajectory. When the inspection spot is not aligned with the trajectory of the axis of rotation, an angular error is introduced in the representation of the position of the inspection spot with respect to the wafer by the rotary encoder. The angular error is corrected based on an angular error correction value. The angular error correction value is determined based on the distance between the inspection spot and the trajectory of the axis of rotation, the radial distance between the axis of rotation and the inspection spot at a first instance of a particular angular position, and a second radial distance between the axis of rotation and the inspection location at a second instance of the angular position.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 7, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yury Yuditsky, Alexander Slobodov, Anatoly Romanovsky
  • Patent number: 9426400
    Abstract: A method of operating an image sensor with a continuously moving object is described. In this method, a timed delay integration mode (TDI-mode) operation can be performed during an extended-time illumination pulse. During this TDI-mode operation, charges stored by pixels of the image sensor are shifted only in a first direction, and track the image motion. Notably, a split-readout operation is performed only during non-illumination. During this split-readout operation, first charges stored by first pixels of the image sensor are shifted in the first direction and second charges stored by second pixels of the image sensor are concurrently shifted in a second direction, the second direction being opposite to the first direction.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 23, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: David L. Brown, Yung-Ho Chuang, Yury Yuditsky
  • Patent number: 9279774
    Abstract: Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to simultaneously form multiple illumination areas on the wafer with substantially no illumination flux between each of the areas. The system also includes a scanning subsystem configured to scan the multiple illumination areas across the wafer. In addition, the system includes a collection subsystem configured to simultaneously and separately image light scattered from each of the areas onto two or more sensors. Characteristics of the two or more sensors are selected such that the scattered light is not imaged into gaps between the two or more sensors. The two or more sensors generate output responsive to the scattered light. The system further includes a computer subsystem configured to detect defects on the wafer using the output of the two or more sensors.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: March 8, 2016
    Assignee: KLA-Tencor Corp.
    Inventors: Anatoly Romanovsky, Ivan Maleev, Daniel Kavaldjiev, Yury Yuditsky, Dirk Woll, Stephen Biellak, Mehdi Vaez-Iravani, Guoheng Zhao
  • Publication number: 20150369753
    Abstract: Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to direct pulses of light to an area on a wafer; a scanning subsystem configured to scan the pulses of light across the wafer; a collection subsystem configured to image pulses of light scattered from the area on the wafer to a sensor, wherein the sensor is configured to integrate a number of the pulses of scattered light that is fewer than a number of the pulses of scattered light that can be imaged on the entire area of the sensor, and wherein the sensor is configured to generate output responsive to the integrated pulses of scattered light; and a computer subsystem configured to detect defects on the wafer using the output generated by the sensor.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 24, 2015
    Inventors: Anatoly Romanovsky, Ivan Maleev, Daniel Kavaldjiev, Yury Yuditsky, Dirk Woll, Stephen Biellak, Mehdi Vaez-Iravani, Guoheng Zhao
  • Patent number: 9091666
    Abstract: Various embodiments for extended defect sizing range for wafer inspection are provided. One inspection system includes an illumination subsystem configured to direct light to the wafer. The system also includes an image sensor configured to detect light scattered from wafer defects and to generate output responsive to the scattered light. The image sensor is also configured to not have an anti-blooming feature such that when a pixel in the image sensor reaches full well capacity, excess charge flows from the pixel to one or more neighboring pixels in the image sensor. The system further includes a computer subsystem configured to detect the defects on the wafer using the output and to determine a size of the defects on the wafer using the output generated by a pixel and any neighboring pixels of the pixel to which the excess charge flows.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 28, 2015
    Assignee: KLA-Tencor Corp.
    Inventors: Zhongping Cai, Yury Yuditsky, Anatoly Romanovsky, Alexander Slobodov
  • Publication number: 20140278188
    Abstract: A wafer is moved under an inspection spot by a rotary inspection system. The system rotates the wafer about an axis of rotation and translates the wafer along a linear trajectory. When the inspection spot is not aligned with the trajectory of the axis of rotation, an angular error is introduced in the representation of the position of the inspection spot with respect to the wafer by the rotary encoder. The angular error is corrected based on an angular error correction value. The angular error correction value is determined based on the distance between the inspection spot and the trajectory of the axis of rotation, the radial distance between the axis of rotation and the inspection spot at a first instance of a particular angular position, and a second radial distance between the axis of rotation and the inspection location at a second instance of the angular position.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Yury Yuditsky, Alexander Slobodov, Anatoly Romanovsky
  • Publication number: 20140158864
    Abstract: A method of operating an image sensor with a continuously moving object is described. In this method, a timed delay integration mode (TDI-mode) operation can be performed during an extended-time illumination pulse. During this TDI-mode operation, charges stored by pixels of the image sensor are shifted only in a first direction, and track the image motion. Notably, a split-readout operation is performed only during non-illumination. During this split-readout operation, first charges stored by first pixels of the image sensor are shifted in the first direction and second charges stored by second pixels of the image sensor are concurrently shifted in a second direction, the second direction being opposite to the first direction.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 12, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: David L. Brown, Yung-Ho Chuang, Yury Yuditsky
  • Publication number: 20130208269
    Abstract: Various embodiments for extended defect sizing range for wafer inspection are provided.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Zhongping Cai, Yury Yuditsky, Anatoly Romanovsky, Alexander Slobodov
  • Publication number: 20130016346
    Abstract: Systems configured to inspect a wafer are provided.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 17, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Anatoly Romanovsky, Ivan Maleev, Daniel Kavaldjiev, Yury Yuditsky, Dirk Woll, Stephen Biellak