Patents by Inventor Yusuke Matsuura

Yusuke Matsuura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914296
    Abstract: [Problem to be Solved] An object is to provide a compound with good heat resistance. And another object is to provide a coating made exhibits less film shrinkage, good gap filling property and good planarization. [Solution] The present invention provides an ethynyl derived composite and a composition comprising thereof. And the present invention provides a method for manufacturing a coating by it, and a method for manufacturing a device.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: February 27, 2024
    Assignee: Merck Patent GmbH
    Inventors: Shigemasa Nakasugi, Yusuke Hama, Hiroshi Yanagita, Takashi Sekito, Yuriko Matsuura
  • Patent number: 11774340
    Abstract: For an easy calibration using calibration particles, provided is a measuring device to capture images of target objects. An image analyzer acquires multiple images obtained at a predetermined time interval, (a) specifies the mean-square displacement of a bright point of a calibration particle based on the displacement of the bright point of the calibration particle in the multiple images in a calibration mode, and (b) specifies the mean-square displacement of a bright point of the target particle based on the displacement of the bright point of the target particle in the multiple images in a measurement mode. A particle size analyzer (c) derives the particle size of the target particle from the mean-square displacement of the bright point of the target particle based on the mean-square displacement of the bright point of the calibration particle and the particle size of the calibration particle in an analysis mode.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 3, 2023
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, RION Co., Ltd., Kioxia Corporation
    Inventors: Haruhisa Kato, Yusuke Matsuura, Ayako Nakamura, Kaoru Kondo, Takuya Tabuchi, Hiroshi Tomita, Hidekazu Hayashi
  • Patent number: 11415500
    Abstract: The purpose of the present invention is to provide a particulate observation device using light scattering, which includes a means for determining the three-dimensional position of a particle, and can measure an accurate particle size or impart various properties of same. The present invention is characterized by including a position determination means which captures, with an optical microscope, an image of light scattered from particles in a dispersion medium to which laser light is emitted, and determines a three-dimensional position of each particle from the obtained two dimensional image, wherein the position determination obtains two-dimensional coordinates along the two-dimensional image from luminescent point positions of the particles, and determines the depth position along a coordinate axis vertical to the two-dimensional image from the diameters of diffraction fringes of the luminescent points.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: August 16, 2022
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Haruhisa Kato, Yusuke Matsuura, Ayako Nakamura
  • Patent number: 11280652
    Abstract: A measuring method enabling simple and accurate measurement of a flow velocity distribution in a flow field inside a flow passage of an optical cell and a particle size-measuring method using the measuring method are provided. Providing a tracer particle of a smaller size than wavelength ? of laser light into the flow passage and capturing a bright spot attributed to light scattering from tracer particles by camera, and obtaining the flow velocity distribution by the analysis unit by obtaining an amount of movement of each tracer particle from movement of the bright spot and correcting a Brownian motion component from a correlation between an average value of variations of the amount of movement and Brownian motion are performed.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: March 22, 2022
    Inventors: Haruhisa Kato, Yusuke Matsuura, Ayako Nakamura
  • Publication number: 20210348999
    Abstract: For an easy calibration using calibration particles, provided is a measuring device to capture images of target objects. An image analyzer acquires multiple images obtained at a predetermined time interval, (a) specifies the mean-square displacement of a bright point of a calibration particle based on the displacement of the bright point of the calibration particle in the multiple images in a calibration mode, and (b) specifies the mean-square displacement of a bright point of the target particle based on the displacement of the bright point of the target particle in the multiple images in a measurement mode. A particle size analyzer (c) derives the particle size of the target particle from the mean-square displacement of the bright point of the target particle based on the mean-square displacement of the bright point of the calibration particle and the particle size of the calibration particle in an analysis mode.
    Type: Application
    Filed: September 30, 2019
    Publication date: November 11, 2021
    Inventors: Haruhisa KATO, Yusuke MATSUURA, Ayako NAKAMURA, Kaoru KONDO, Takuya TABUCHI, Hiroshi TOMITA, Hidekazu HAYASHI
  • Publication number: 20210055197
    Abstract: The purpose of the present invention is to provide a particulate observation device using light scattering, which includes a means for determining the three-dimensional position of a particle, and can measure an accurate particle size or impart various properties of same. The present invention is characterized by including a position determination means which captures, with an optical microscope, an image of light scattered from particles in a dispersion medium to which laser light is emitted, and determines a three-dimensional position of each particle from the obtained two dimensional image, wherein the position determination obtains two-dimensional coordinates along the two-dimensional image from luminescent point positions of the particles, and determines the depth position along a coordinate axis vertical to the two-dimensional image from the diameters of diffraction fringes of the luminescent points.
    Type: Application
    Filed: August 30, 2019
    Publication date: February 25, 2021
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Haruhisa Kato, Yusuke Matsuura, Ayako Nakamura
  • Patent number: 10837890
    Abstract: Provided is a particle measuring device and a particle measuring method for measuring a particle size with favorable accuracy. A flow cell (1) includes a flow passage (1a) of sample fluid. An irradiation optical system (3) irradiates, with light from a light source (2), the sample fluid in the flow passage (1a). An imaging unit (4) captures, from an extension direction of the flow passage (1a), an image of scattered light from the particle in a detection region in the flow passage (1a), the light passing through the detection region. A particle size specifying unit specifies a movement amount of the particle in a two-dimensional direction by Brownian motion based on multiple still images of a particle image captured at a predetermined frame rate by the imaging unit (4), thereby specifying the particle size of the particle from the movement amount in the two-dimensional direction.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: November 17, 2020
    Assignees: RION Co., Ltd., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Kaoru Kondo, Takuya Tabuchi, Kazuna Bando, Haruhisa Kato, Yusuke Matsuura
  • Publication number: 20200124514
    Abstract: Provided is a particle measuring device and a particle measuring method for measuring a particle size with favorable accuracy. A flow cell (1) includes a flow passage (1a) of sample fluid. An irradiation optical system (3) irradiates, with light from a light source (2), the sample fluid in the flow passage (1a). An imaging unit (4) captures, from an extension direction of the flow passage (1a), an image of scattered light from the particle in a detection region in the flow passage (1a), the light passing through the detection region. A particle size specifying unit specifies a movement amount of the particle in a two-dimensional direction by Brownian motion based on multiple still images of a particle image captured at a predetermined frame rate by the imaging unit (4), thereby specifying the particle size of the particle from the movement amount in the two-dimensional direction.
    Type: Application
    Filed: March 30, 2018
    Publication date: April 23, 2020
    Inventors: Kaoru KONDO, Takuya TABUCHI, Kazuna BANDO, Haruhisa KATO, Yusuke MATSUURA
  • Publication number: 20200064169
    Abstract: A measuring method enabling simple and accurate measurement of a flow velocity distribution in a flow field inside a flow passage of an optical cell and a particle size-measuring method using the measuring method are provided.
    Type: Application
    Filed: December 5, 2017
    Publication date: February 27, 2020
    Inventors: Haruhisa KATO, Yusuke MATSUURA, Ayako NAKAMURA
  • Patent number: 8212048
    Abstract: A method of producing an aromatic compound of the following formula (3) comprising reacting a compound of the following formula (1) with an olefin compound of the following formula (2) in the presence of a transition metal complex: (wherein, an Ar1 ring represents an aromatic hydrocarbon ring or aromatic heterocyclic ring, an Ar2 ring represents a heterocyclic ring containing X1 and N*, and the X1 represents a nitrogen atom or carbon atom and the N represents a nitrogen atom connecting via a double bond to either one of two adjacent atoms in the Ar2 ring.) (wherein, R1, R2, R3 and R4 represent each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 18 carbon atoms.) (wherein, Ar1, Ar2, X1, N*, R1, R2 and R3 represent the same meanings as described above.).
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: July 3, 2012
    Assignees: Sumitomo Chemical Company, Limited, Osaka University
    Inventors: Fumitoshi Kakiuchi, Yusuke Matsuura, Masato Ueda
  • Publication number: 20090043096
    Abstract: A method of producing an aromatic compound of the following formula (3) comprising reacting a compound of the following formula (1) with an olefin compound of the following formula (2) in the presence of a transition metal complex: (wherein, an Ar1 ring represents an aromatic hydrocarbon ring or aromatic heterocyclic ring, an Ar2 ring represents a heterocyclic ring containing X1 and N*, and the X1 represents a nitrogen atom or carbon atom and the N represents a nitrogen atom connecting via a double bond to either one of two adjacent atoms in the Ar2 ring.) (wherein, R1, R2, R3 and R4 represent each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 18 carbon atoms.) (wherein, Ar1, Ar2, X1, N*, R1, R2 and R3 represent the same meanings as described above.).
    Type: Application
    Filed: February 2, 2007
    Publication date: February 12, 2009
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, OSAKA UNIVERSITY
    Inventors: Fumitoshi Kakiuchi, Yusuke Matsuura, Masato Ueda