Patents by Inventor Yusuke Yamauchi

Yusuke Yamauchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170257182
    Abstract: An optical reception apparatus (1) of the present invention includes: a local oscillator (11) outputting local oscillation light (22); an optical mixer (12) receiving a multiplexed optical signal (21) and the local oscillation light, and selectively outputting an optical signal (23) corresponding to the wavelength of the local oscillation light from the multiplexed optical signal; a photoelectric converter (13) converting the optical signal (23) output from the optical mixer into an electric signal (24); a variable gain amplifier (15) amplifying the electric signal (24) to generate an output signal (25) whose output amplitude is amplified to a certain level; a gain control signal generating circuit (16) generating a gain control signal (26) for controlling the gain of the variable gain amplifier (15); and a monitor signal generating unit (17) generating a monitor signal (27) corresponding to the power of the optical signal (23) using the gain control signal (26).
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventor: Yusuke YAMAUCHI
  • Patent number: 9692545
    Abstract: An optical reception apparatus (1) of the present invention includes: a local oscillator (11) outputting local oscillation light (22); an optical mixer (12) receiving a multiplexed optical signal (21) and the local oscillation light, and selectively outputting an optical signal (23) corresponding to the wavelength of the local oscillation light from the multiplexed optical signal; a photoelectric converter (13) converting the optical signal (23) output from the optical mixer into an electric signal (24); a variable gain amplifier (15) amplifying the electric signal (24) to generate an output signal (25) whose output amplitude is amplified to a certain level; a gain control signal generating circuit (16) generating a gain control signal (26) for controlling the gain of the variable gain amplifier (15); and a monitor signal generating unit (17) generating a monitor signal (27) corresponding to the power of the optical signal (23) using the gain control signal (26).
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 27, 2017
    Assignee: NEC Corporation
    Inventor: Yusuke Yamauchi
  • Publication number: 20160164624
    Abstract: An optical reception apparatus (1) of the present invention includes: a local oscillator (11) outputting local oscillation light (22); an optical mixer (12) receiving a multiplexed optical signal (21) and the local oscillation light, and selectively outputting an optical signal (23) corresponding to the wavelength of the local oscillation light from the multiplexed optical signal; a photoelectric converter (13) converting the optical signal (23) output from the optical mixer into an electric signal (24); a variable gain amplifier (15) amplifying the electric signal (24) to generate an output signal (25) whose output amplitude is amplified to a certain level; a gain control signal generating circuit (16) generating a gain control signal (26) for controlling the gain of the variable gain amplifier (15); and a monitor signal generating unit (17) generating a monitor signal (27) corresponding to the power of the optical signal (23) using the gain control signal (26).
    Type: Application
    Filed: March 27, 2014
    Publication date: June 9, 2016
    Inventor: Yusuke YAMAUCHI
  • Patent number: 9346678
    Abstract: A method of producing macroporous carbon capsules includes providing pollen grains from date palm (Phoenix dactylifera L.) males, drying the pollen grains, heating the dried pollen grains to a temperature of at least 500° C. under an atmosphere of N2 gas to produce macroporous carbon capsules. The macroporous carbon capsules produced from the above method can have an oval shape with a diameter in the range of about 18 ?m to about 20 ?m. The macroporous carbon capsules have a mean pore diameter in the range of about 50 nm to about 450 nm. The pores are three-dimensionally interconnected via nanoscopic carbon walls. The carbon walls have a thickness of about 4 ?m.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 24, 2016
    Assignee: KING SAUD UNIVERSITY
    Inventors: Saad M. Alshehri, Tansir Ahmad, Hamad A. Al-Lohedan, Yusuke Yamauchi
  • Patent number: 8687967
    Abstract: To provide an optical transceiver with which a plurality of optical transmitters and receivers constituting the optical transceiver can be detached individually and exchanged/repaired easily, so that waste of components can be avoided. The optical transceiver includes: an optical transceiver main body; a plurality of pairs of optical transmitters and optical receivers housed inside the optical transceiver main body by being disposed in parallel; optical transmitter substrates and optical receiver substrates, which individually hold each of the optical transmitters and the optical receivers; an optical transceiver substrate which holds each of the optical transmitter substrates and the optical receiver substrates; and connectors which connect each of the optical transmitter substrates as well as the optical receiver substrates to the optical transceiver substrate detachably.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 1, 2014
    Assignee: NEC Corporation
    Inventor: Yusuke Yamauchi
  • Publication number: 20120148254
    Abstract: To provide an optical transceiver with which a plurality of optical transmitters and receivers constituting the optical transceiver can be detached individually and exchanged/repaired easily, so that waste of components can be avoided. The optical transceiver includes: an optical transceiver main body; a plurality of pairs of optical transmitters and optical receivers housed inside the optical transceiver main body by being disposed in parallel; optical transmitter substrates and optical receiver substrates, which individually hold each of the optical transmitters and the optical receivers; an optical transceiver substrate which holds each of the optical transmitter substrates and the optical receiver substrates; and connectors which connect each of the optical transmitter substrates as well as the optical receiver substrates to the optical transceiver substrate detachably.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Inventor: YUSUKE YAMAUCHI
  • Publication number: 20110172388
    Abstract: There is provided an easily dyeable meta-type wholly aromatic polyamide fiber excellent in dyeability and acid resistance, and having a very small residual solvent content. The components or conditions of the coagulation bath are appropriately adjusted so as to achieve a coagulated form not having a skin core, plasticization drawing is performed at a specific ratio, and after completing a washing step, a dry heat treatment is performed at a specific temperature.
    Type: Application
    Filed: September 28, 2009
    Publication date: July 14, 2011
    Applicant: TEIJIN TECHNO PRODUCTS LIMITED
    Inventors: Yusuke Yamauchi, Kotarou Takiue