Patents by Inventor Zackery Evans
Zackery Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12156683Abstract: A bone implant system may include a plurality of bone anchors, a superior rod attachable to a superior portion of a bone via the bone anchors, and an inferior rod attachable to an inferior portion of the bone via the bone anchors. The superior rod may have a superior end, and the inferior rod may have an inferior end. The superior rod may telescopically engage the inferior rod such that a cavity is present within at least one of the superior rod and the inferior rod and such that a length of the combined superior and inferior rods, measured between the superior end and the inferior end, is adjustable. The cavity may contain a micropump and a chamber. The micropump may be configured to expel fluid into the chamber to urge the length to increase.Type: GrantFiled: August 30, 2022Date of Patent: December 3, 2024Assignee: University of Utah Research FoundationInventors: John Heflin, T. Wade Fallin, Zackery Evans
-
Patent number: 12023047Abstract: A trephine may be used to form a tunnel through bone and/or cartilage. The trephine may have a trephine body with a generally tubular shape centered on a trephine body longitudinal axis, and a trephine body distal rim. The trephine may also have a drive shaft that receives torque and transmits the torque to the trephine body. The trephine body distal rim may lie substantially in a plane that is non-perpendicular to the trephine body longitudinal axis. The trephine may further have a cutting tooth extending distally from the trephine body distal rim. The cutting tooth may have a first distal tip and a second distal tip displaced circumferentially from the first distal tip. The trephine may be advanced while rotating to form the tunnel through bone and a first, adjacent cartilage surface of a joint, without breaching a second cartilage surface on the opposite side of the joint.Type: GrantFiled: July 14, 2023Date of Patent: July 2, 2024Assignee: University of Utah Research FoundationInventors: Zackery Evans, T. Wade Fallin, Travis G. Maak, Charles L. Saltzman
-
Patent number: 11896240Abstract: A system for harvesting bone material from a bone may include a rotary cutter defining a rotary cutter longitudinal axis extending between a rotary cutter proximal end and a rotary cutter distal end. The rotary cutter may have a drive shaft configured to receive input torque, and an osteochondral cutter configured to cut the tissue and receive the tissue material in response to rotation of the osteochondral cutter under pressure against the tissue. The system may further include a bone port defining a bone port longitudinal axis extending between a bone port proximal end and a bone port distal end. The bone port may have a bone port cannulation sized to closely fit over the osteochondral cutter. At least one of the bone port proximal end and the bone port distal end may be securable to the tissue. A stratiform tissue graft may be delivered through the bone port.Type: GrantFiled: December 1, 2022Date of Patent: February 13, 2024Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATIONInventors: Zackery Evans, T. Wade Fallin, Travis G. Maak, Charles L. Saltzman
-
Publication number: 20230404601Abstract: A system for harvesting bone material from a bone may include a rotary cutter defining a rotary cutter longitudinal axis extending between a rotary cutter proximal end and a rotary cutter distal end. The rotary cutter may have a drive shaft configured to receive input torque, and an osteochondral cutter configured to cut the tissue and receive the tissue material in response to rotation of the osteochondral cutter under pressure against the tissue. The system may further include a bone port defining a bone port longitudinal axis extending between a bone port proximal end and a bone port distal end. The bone port may have a bone port cannulation sized to closely fit over the osteochondral cutter. At least one of the bone port proximal end and the bone port distal end may be securable to the tissue. A stratiform tissue graft may be delivered through the bone port.Type: ApplicationFiled: December 1, 2022Publication date: December 21, 2023Applicant: University of Utah Research FoundationInventors: Zackery EVANS, T. Wade FALLIN, Travis G. MAAK, Charles L. SALTZMAN
-
Patent number: 11801079Abstract: A tether assembly may be attached to a bone to correct a rotational deformity. The bone may have a growth plate that separates a first section of the bone from a second section of the bone. The tether assembly may have a tether member with a first end, a second end, and a central portion extending between the first end and the second end. The first end may have a closed outer wall that defines and fully bounds a first aperture. The second end may have an open outer wall that defines and partially bounds a second aperture. The open outer wall may define a slot in communication with the second aperture. The first and second ends may be securable to the first and second sections of the bone via coupling members inserted through the first and second apertures and anchored in the first and second sections, respectively.Type: GrantFiled: October 3, 2022Date of Patent: October 31, 2023Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATIONInventors: Zackery Evans, T. Wade Fallin, Peter M. Stevens
-
Patent number: 11660194Abstract: A system for harvesting bone material from a bone may include a rotary cutter defining a rotary cutter longitudinal axis extending between a rotary cutter proximal end and a rotary cutter distal end. The rotary cutter may have a drive shaft configured to receive input torque, and an osteochondral cutter configured to cut the tissue and receive the tissue material in response to rotation of the osteochondral cutter under pressure against the tissue. The system may further include a bone port defining a bone port longitudinal axis extending between a bone port proximal end and a bone port distal end. The bone port may have a bone port cannulation sized to closely fit over the osteochondral cutter. At least one of the bone port proximal end and the bone port distal end may be securable to the tissue. A stratiform tissue graft may be delivered through the bone port.Type: GrantFiled: June 20, 2022Date of Patent: May 30, 2023Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATIONInventors: Zackery Evans, T. Wade Fallin, Travis G. Maak, Charles L. Saltzman
-
Publication number: 20230149061Abstract: A tether assembly may be attached to a bone to correct a rotational deformity. The bone may have a growth plate that separates a first section of the bone from a second section of the bone. The tether assembly may have a tether member with a first end, a second end, and a central portion extending between the first end and the second end. The first end may have a closed outer wall that defines and fully bounds a first aperture. The second end may have an open outer wall that defines and partially bounds a second aperture. The open outer wall may define a slot in communication with the second aperture. The first and second ends may be securable to the first and second sections of the bone via coupling members inserted through the first and second apertures and anchored in the first and second sections, respectively.Type: ApplicationFiled: October 3, 2022Publication date: May 18, 2023Applicant: University of Utah Research FoundationInventors: Zackery EVANS, T. Wade FALLIN, Peter M. STEVENS
-
Publication number: 20230069132Abstract: A bone implant system may include a plurality of bone anchors, a superior rod attachable to a superior portion of a bone via the bone anchors, and an inferior rod attachable to an inferior portion of the bone via the bone anchors. The superior rod may have a superior end, and the inferior rod may have an inferior end. The superior rod may telescopically engage the inferior rod such that a cavity is present within at least one of the superior rod and the inferior rod and such that a length of the combined superior and inferior rods, measured between the superior end and the inferior end, is adjustable. The cavity may contain a micropump and a chamber. The micropump may be configured to expel fluid into the chamber to urge the length to increase.Type: ApplicationFiled: August 30, 2022Publication date: March 2, 2023Applicant: University of Utah Research FoundationInventors: John HEFLIN, T. Wade FALLIN, Zackery EVANS
-
Patent number: 11523834Abstract: A system for harvesting bone material from a bone may include a rotary cutter defining a rotary cutter longitudinal axis extending between a rotary cutter proximal end and a rotary cutter distal end. The rotary cutter may have a drive shaft configured to receive input torque, and an osteochondral cutter configured to cut the tissue and receive the tissue material in response to rotation of the osteochondral cutter under pressure against the tissue. The system may further include a bone port defining a bone port longitudinal axis extending between a bone port proximal end and a bone port distal end. The bone port may have a bone port cannulation sized to closely fit over the osteochondral cutter. At least one of the bone port proximal end and the bone port distal end may be securable to the tissue. A stratiform tissue graft may be delivered through the bone port.Type: GrantFiled: June 20, 2022Date of Patent: December 13, 2022Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATIONInventors: Zackery Evans, T. Wade Fallin, Travis G. Maak, Charles L. Saltzman
-
Patent number: 11457965Abstract: A tether assembly may be attached to a bone to correct a rotational deformity. The bone may have a growth plate that separates a first section of the bone from a second section of the bone. The tether assembly may have a tether member with a first end, a second end, and a central portion extending between the first end and the second end. The first end may have a closed outer wall that defines and fully bounds a first aperture. The second end may have an open outer wall that defines and partially bounds a second aperture. The open outer wall may define a slot in communication with the second aperture. The first and second ends may be securable to the first and second sections of the bone via coupling members inserted through the first and second apertures and anchored in the first and second sections, respectively.Type: GrantFiled: November 12, 2021Date of Patent: October 4, 2022Assignee: University of Utah Research FoundationInventors: Zackery Evans, T. Wade Fallin, Peter M. Stevens