Patents by Inventor Zhao-Fu Hu

Zhao-Fu Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060250066
    Abstract: A light source apparatus (8) includes a rear plate (80), a front plate formed with an anode layer (82), and a cathode (81) interposed therebetween. The cathode includes a plurality of electrically conductive carriers (812) and a plurality of field emitters (816) formed thereon. The field emitters are uniformly distributed on anode-facing surfaces of the conductive carriers. Preferably, the field emitters extend radially outwardly from the corresponding conductive carriers. The conductive carriers are parallel with each other, and are located substantially on a common plane. Each of the conductive carriers can be connected with a pulling device arranged at least one end thereof, and an example of the pulling device is a spring. The conductive carriers may be cylindrical, prism-shaped or polyhedral.
    Type: Application
    Filed: July 14, 2005
    Publication date: November 9, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Peng Liu, Yang Wei, Lei-Mei Sheng, Liang Liu, Zhao-Fu Hu, Cai-Lin Guo, Pi-Jin Chen, Shou-Shan Fan
  • Patent number: 7129708
    Abstract: A vacuum ionization gauge (30) includes a cathode (31), an anode ring (33), a shield electrode (32), an ion educed electrode (34), a reflector (35) and a collector (36). The cathode is positioned corresponding to a first opening of the shield electrode, and the ion educed electrode is positioned corresponding to an opposite second opening of the shield electrode. An ion educed hole (341) is defined in a middle of the ion educed electrode. The reflector has a curving surface generally surrounding the second opening of the shield electrode. The collector is positioned at a center of the curving surface of the reflector and points toward the ion educed hole. The anode ring is positioned in the middle of the shield electrode. The vacuum ionization gauge is small volume and has low power consumption and improved sensitivity.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: October 31, 2006
    Assignees: Tsinghua University, HON HAI Precision Industry Co., Ltd.
    Inventors: Peng Liu, Yang Wei, Lei-Mei Sheng, Liang Liu, Zhao-Fu Hu, Cai-Lin Guo, Pi-Jin Chen, Shou-Shan Fan
  • Publication number: 20060196245
    Abstract: A reference leak (10) includes a first substrate (20), a second substrate (40) disposed and bonded on the first substrate, and predetermined numbers of leak channels (14) defined in at least one of the first and second substrates. Oblique walls of the leak channels are formed by crystal planes of the at least one of the first and second substrates, the oblique walls thereby being aligned according to such crystal planes. A method for making a reference leak is also provided.
    Type: Application
    Filed: February 24, 2006
    Publication date: September 7, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Liang Liu, Shuai-Ping Ge, Zhao-Fu Hu, Bing-Chu Du, Cai-Lin Guo, Pi-Jin Chen, Shou-Shan Fan
  • Publication number: 20060144120
    Abstract: A reference leak includes a leak layer formed of one of a metallic material, a glass material, and a ceramic material. The metallic material is selected from the group consisting of copper, nickel, and molybdenum. The leak layer comprises a number of substantially parallel leak through holes defined therein. The leak through holes may be cylindrical holes or polyhedrical holes. A length of each of the leak through holes is preferably not less than 20 times a diameter thereof. A diameter of each of the leak through holes is generally in the range from 10 nm to 500 nm. A length of each of the leak through holes is generally in the range from 100 nm to 100 ?m. A leak rate of the reference leak is in the range from 10?8 to 10?15 torĂ—l/s. The leak through holes have substantially same length and diameter.
    Type: Application
    Filed: September 16, 2005
    Publication date: July 6, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Jie Tang, Liang Liu, Peng Liu, Zhao-Fu Hu, Bing-Chu Du, Cai-Lin Guo, Pi-Jin Chen, Shou-Shan Fan
  • Publication number: 20060143895
    Abstract: A method for making a reference leak includes the steps of: (a) preparing a substrate; (b) forming a patterned catalyst layer on the substrate, the patterned catalyst layer comprising one or more catalyst blocks; (c) forming one or more elongate nano-structures extending from the corresponding catalyst blocks by a chemical vapor deposition method; (d) forming a leak layer of one of a metallic material, a glass material, and a ceramic material on the substrate with the one or more elongate nano-structures partly or completely embedded therein; and (e) removing the one or more elongate nano-structures and the substrate to obtain a reference leak with one or more leak holes defined therein.
    Type: Application
    Filed: September 16, 2005
    Publication date: July 6, 2006
    Applicant: HON HAI Precision Industry CO., LTD.
    Inventors: Liang Liu, Jie Tang, Peng Liu, Zhao-Fu Hu, Bing-Chu Du, Cai-Lin Guo, Pi-Jin Chen, Shuai-Ping Ge, Shou-Shan Fan
  • Publication number: 20060103288
    Abstract: A field emission device (8) includes a cathode (80), an anode (84), and spacers (83) interposed therebetween. The cathode includes a network base (81) and a plurality of field emitters (82) formed thereon. The network base is formed of a plurality of electrically conductive carriers. The field emitters are located on surfaces of the carriers, respectively. The field emitters extend radially outwardly from the corresponding conductive carriers. The plurality of electrically conductive carriers may be made of electrically conductive fibers, for example, metal fibers, carbon fibers, organic fibers or another suitable fibrous material. Carrier portions of the plurality of electrically conductive carriers may be cylindrical, curved/arcuate, or at least approximately curved in shape.
    Type: Application
    Filed: October 3, 2005
    Publication date: May 18, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Lei-Mei Sheng, Peng Liu, Yang Wei, Li Quan, Jie Tang, Liang Liu, Pi-Jin Chen, Zhao-Fu Hu, Shou-Shan Fan
  • Publication number: 20060022574
    Abstract: A light source apparatus (8) includes a rear plate (80), a front plate (89) formed with an anode layer (82), and a cathode (81) interposed therebetween. The cathode includes a plurality of electrically conductive carriers (812) and a plurality of field emitters (816) formed thereon. The field emitters are uniformly distributed on anode-facing surfaces of the conductive carriers. The anode layer includes a plurality of curving portions (820) corresponding to the conductive carriers. Preferably, the field emitters extend radially outwardly from the corresponding conductive carriers. The conductive carriers are parallel with each other, and are located substantially on a common plane. Each of the conductive carriers can be connected with a pulling device arranged at least one end thereof, and an example of the pulling device is a spring. The conductive carriers may be cylindrical, prism-shaped or polyhedral.
    Type: Application
    Filed: July 19, 2005
    Publication date: February 2, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Pi-Jin Chen, Peng Liu, Lei-Mei Sheng, Yang Wei, Liang Liu, Zhao-Fu Hu, Cai-Lin Guo, Shou-Shan Fan
  • Publication number: 20060022576
    Abstract: A field emission lamp includes: a transparent bulb (10) having a neck portion; a lamp head mated with the neck portion; an anode layer (20) formed on an inner surface of the bulb; a fluorescence layer (30) formed on the anode layer; a cathode electrode (43) and an anode electrode (23) located at the lamp head; an anode down-lead ring (24) located at the neck portion, the anode down-lead ring engaging with the anode layer and electrically connecting with the anode electrode via an anode down-lead pole (21) and a pair of down-leads (22); and an electron emitting cathode positioned in the bulb and engaging with the cathode electrode. The field emission lamp is safe for humans and environmentally friendly, provides a high electrical energy utilization ratio, and has a reduced cost.
    Type: Application
    Filed: July 19, 2005
    Publication date: February 2, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Yang Wei, Peng Liu, Lei-Mei Sheng, Liang Liu, Zhao-Fu Hu, Cai-Lin Guo, Pi-Jin Chen, Shou-Shan Fan
  • Publication number: 20060017370
    Abstract: A field emission lamp (30) includes a tube (31) having a closed end and an open end, an encapsulation board (38) mated with the open end, an anode layer (32) formed on an inner surface, a fluorescence layer (33) formed on the anode layer, a cathode down-lead pole (342) located at the encapsulation board, a cathode fixing pole (341) located at the closed end, a cathode filament (34) having a carbon nanotube layer formed on a surface thereof fixed between the cathode down-lead pole and the cathode fixing pole, an anode down-lead ring (321) located at the anode layer near the open end, and an anode down-lead pole (322) located at the encapsulation board and electrically connected with the anode down-lead ring. The field emission lamp has a simple structure, thereby having an enhanced production rate and a reduced cost.
    Type: Application
    Filed: June 28, 2005
    Publication date: January 26, 2006
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Yang Wei, Peng Liu, Lei-Mei Sheng, Liang Liu, Zhao-Fu Hu, Cai-Lin Guo, Pi-Jin Chen, Shou-Shan Fan
  • Publication number: 20050236951
    Abstract: A preferred method for making a carbon nanotube-based field emission cathode device in accordance with the invention includes the following steps: preparing a solution having a solvent and a predetermined quantity of carbon nanotubes dispersed therein; providing a base with an electrode (101) formed thereon; forming a layer of conductive grease (102) on the base; distributing the solution on the layer of conductive grease to form a carbon nanotube layer (103) on the conductive grease; and scoring the layer of conductive grease, for separating first ends of at least some of the carbon nanotubes from the conductive grease for attaining effective carbon nanotube field emission cathode.
    Type: Application
    Filed: March 25, 2005
    Publication date: October 27, 2005
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Peng Liu, Yang Wei, Lei-Mei Sheng, Liang Liu, Shou-Shan Fan, Zhao-Fu Hu