Patents by Inventor Zhaowei Jia

Zhaowei Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11103898
    Abstract: The present invention discloses a method for effectively cleaning vias, trenches or recessed areas on a substrate using an ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after the ratio of total bubbles volume to volume inside vias, trenches or recessed areas on the substrate increasing to a first set value, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after the ratio of total bubbles volume to volume inside the vias, trenches or recessed areas reducing to a second set value, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 31, 2021
    Assignee: ACM Research, Inc.
    Inventors: Hui Wang, Xi Wang, Fuping Chen, Fufa Chen, Jian Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Jun Wang, Xuejun Li
  • Patent number: 11037804
    Abstract: The present invention discloses a method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: June 15, 2021
    Assignee: ACM Research, Inc.
    Inventors: Hui Wang, Xi Wang, Fuping Chen, Fufa Chen, Jian Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Jun Wang, Xuejun Li
  • Patent number: 11008669
    Abstract: An apparatus for holding a substrate (113) has a chuck cup (101), a seal shell (111), a chuck plate (102) and a vertical driving device (103). The seal shell (111) has a bottom wall (1111), an outer wall (1112) and an inner wall (1114). The inner wall (1114) forms a lip seal portion (1115). The bottom wall (1111) and the outer wall (1112) of the seal shell (111) respectively wrap the bottom surface and the outer surface of the base portion (1011) of the chuck cup (101). The lip seal portion (1115) wraps the supporting portion (1014) of the chuck cup (101) for sealing the edge of the front side of the substrate (113). The apparatus protects the edge of the front side of the substrate, the back side of the substrate and the chuck cup from contacting with the electrolyte solution.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: May 18, 2021
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Zhaowei Jia, Hongchao Yang, Jun Wu, Jian Wang
  • Publication number: 20210125848
    Abstract: A method for cleaning semiconductor substrate without damaging patterned structure on the substrate using ultra/mega sonic device comprising applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; before bubble cavitation in said liquid damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned. Normally, if f1=f2, then P2 is equal to zero or much less than P1; if P1=P2, then f2 is higher than f1; if the f1<f2, then, P2 can be either equal or less than P1.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 29, 2021
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Jun Wang, Xuejun Li
  • Publication number: 20210066106
    Abstract: A plating chuck for holding a substrate during plating processes, wherein the substrate has a notch area (3031) and a patterned region (3032) adjacent to the notch area (3031). The plating chuck comprises a cover plate (3033) configured to cover the notch area (3031) of the substrate to shield the electric field at the notch area (3031) when the substrate is being plated.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 4, 2021
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Jian Wang, Zhaowei Jia, Hongchao Yang
  • Patent number: 10910244
    Abstract: A method for cleaning semiconductor substrate without damaging patterned structure on the substrate using ultra/mega sonic device comprising applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; before bubble cavitation in said liquid damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned. Normally, if f1=f2, then P2 is equal to zero or much less than P1; if P1=P2, then f2 is higher than f1; if the f1<f2, then, P2 can be either equal or less than P1.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: February 2, 2021
    Assignee: ACM Research, Inc.
    Inventors: Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Jun Wang, Xuejun Li
  • Publication number: 20200354851
    Abstract: A plating apparatus for depositing metal on a substrate, comprising a membrane frame (14), a catholyte inlet pipe (30) and a center cap (40). The membrane frame (14) has a center passage (144) which passes through the center of the membrane frame (14). The catholyte inlet pipe (30) is connected to the center passage (144) of the membrane frame (14). The center cap (40) is fixed at the center of the membrane frame (14) and covers over the center passage (144) of the membrane frame (14). The top of the center cap (40) has a plurality of first holes (42). The catholyte inlet pipe (30) supplies catholyte to the center cap (40) through the center passage (144) of the membrane frame (14), and the catholyte is supplied to a center area of the substrate through the first holes (42) of the center cap (40).
    Type: Application
    Filed: August 30, 2017
    Publication date: November 12, 2020
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Zhaowei Jia, Hongchao Yang, Chenhua Lu, Jian Wang, Hui Wang
  • Publication number: 20200335325
    Abstract: A method for cleaning semiconductor substrate (1010,2010) without damaging patterned structure on the semiconductor substrate (1010,2010) using ultra/mega sonic device (1003,2003) comprises applying liquid into a space between a substrate (1010,2010) and an ultra/mega sonic device (1003,2003); setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device (1003,2003); before bubble cavitation in the liquid damaging patterned structure on the substrate (1010,2010), setting the ultra/mega sonic power supply at zero output;after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again; detecting power on time at power P1 and frequency f1 and power off time separately or detecting amplitude of each waveform output by the ultra/mega sonic power supply; comparing the detected power on time with a preset time ?1, or comparing the detected power off time with a preset time ?2, or comparing dete
    Type: Application
    Filed: April 6, 2016
    Publication date: October 22, 2020
    Inventors: Jun Wang, Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Xuejun Li
  • Patent number: 10615073
    Abstract: Provided is a method for removing barrier layer for minimizing sidewall recess. The method comprises the following steps: introduce noble-gas-halogen compound gas and carrier gas into an etching chamber within which a thermal gas phase etching process is being performed for etching a barrier layer (206) on non-recessed areas of an interconnection structure (501); detect an end point of the thermal gas phase etching process (502), if the thermal gas phase etching process reaches the end point end point, then execute the next step; if the thermal gas phase etching process doesn't reach the end point, then return to the previous step; stop introducing the noble-gas-halogen compound gas and the carrier gas to the etching chamber (503).
    Type: Grant
    Filed: February 15, 2015
    Date of Patent: April 7, 2020
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Zhaowei Jia, Jian Wang, Hui Wang
  • Publication number: 20190393074
    Abstract: The present invention provides a barrier layer removal method, wherein the barrier layer includes at least one layer of ruthenium or cobalt, the method comprising: removing the barrier layer including ruthenium or cobalt formed on non-recessed areas of a semiconductor structure by thermal flow etching.
    Type: Application
    Filed: September 4, 2019
    Publication date: December 26, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Zhaowei Jia, Dongfeng Xiao, Jian Wang, Hui Wang
  • Patent number: 10453743
    Abstract: The present invention provides a barrier layer removal method, wherein the barrier layer includes at least one layer of ruthenium or cobalt, the method comprising: removing the barrier layer including ruthenium or cobalt formed on non-recessed areas of a semiconductor structure by thermal flow etching.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: October 22, 2019
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Zhaowei Jia, Dongfeng Xiao, Jian Wang, Hui Wang
  • Publication number: 20190283090
    Abstract: The present invention discloses a method for effectively cleaning vias, trenches or recessed areas on a substrate using an ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after the ratio of total bubbles volume to volume inside vias, trenches or recessed areas on the substrate increasing to a first set value, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after the ratio of total bubbles volume to volume inside the vias, trenches or recessed areas reducing to a second set value, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
    Type: Application
    Filed: September 19, 2016
    Publication date: September 19, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Xi Wang, Fuping Chen, Fufa Chen, Jian Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Jun Wang, Xuejun Li
  • Publication number: 20190287824
    Abstract: The present invention discloses a method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
    Type: Application
    Filed: September 20, 2016
    Publication date: September 19, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Xi Wang, Fuping Chen, Fufa Chen, Jian Wang, Xiao Zhang, YInuo Jin, Zhaowei Jia, Jun Wang, XueJun Li
  • Patent number: 10217662
    Abstract: A method for processing an interconnection structure for minimizing barrier sidewall recess, comprises the following steps: step 1, remove a metal layer (408) to generate a uniform dishing value inside the recessed area (409), the uniform dishing value is generated to make sure that the top surface of the metal layer (408) in the recessed area (409) is aligned with the bottom surface of the hard mask layer (405), step 2, introduce noble-gas-halogen compound gas to remove a first barrier layer (406) on top surface and at least a portion of a second barrier layer (407) on sidewall by a gas phase chemical reaction process, the top surface of the second barrier layer (407) on sidewall is aligned with the bottom surface of the hard mask layer (405), step 3, introduce oxidizing gas to generate a barrier surface oxide (411) on the top surface of the second barrier layer (407) on sidewall, a metal surface oxide (412) is generated at the same time, step 4, introduce noble-gas-halogen compound gas to remove hard mask l
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: February 26, 2019
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Zhaowei Jia, Jian Wang, Hui Wang
  • Publication number: 20180320285
    Abstract: An apparatus for holding a substrate (113) has a chuck cup (101), a seal shell (111), a chuck plate (102) and a vertical driving device (103). The seal shell (111) has a bottom wall (1111), an outer wall (1112) and an inner wall (1114). The inner wall (1114) forms a lip seal portion (1115). The bottom wall (1111) and the outer wall (1112) of the seal shell (111) respectively wrap the bottom surface and the outer surface of the base portion (1011) of the chuck cup (101). The lip seal portion (1115) wraps the supporting portion (1014) of the chuck cup (101) for sealing the edge of the front side of the substrate (113). The apparatus protects the edge of the front side of the substrate, the back side of the substrate and the chuck cup from contacting with the electrolyte solution.
    Type: Application
    Filed: December 4, 2015
    Publication date: November 8, 2018
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Zhaowei Jia, Hongchao Yang, Jun Wu, Jian Wang
  • Publication number: 20180240701
    Abstract: A method for processing an interconnection structure for minimizing barrier sidewall recess, comprises the following steps: step 1, remove a metal layer (408) to generate a uniform dishing value inside the recessed area (409), the uniform dishing value is generated to make sure that the top surface of the metal layer (408) in the recessed area (409) is aligned with the bottom surface of the hard mask layer (405), step 2, introduce noble-gas-halogen compound gas to remove a first barrier layer (406) on top surface and at least a portion of a second barrier layer (407) on sidewall by a gas phase chemical reaction process, the top surface of the second barrier layer (407) on sidewall is aligned with the bottom surface of the hard mask layer (405), step 3, introduce oxidizing gas to generate a barrier surface oxide (411) on the top surface of the second barrier layer (407) on sidewall, a metal surface oxide (412) is generated at the same time, step 4, introduce noble-gas-halogen compound gas to remove hard mask l
    Type: Application
    Filed: August 12, 2015
    Publication date: August 23, 2018
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Zhaowei Jia, Jian Wang, Hui Wang
  • Patent number: 10020208
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 10, 2018
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20180151398
    Abstract: A method for cleaning semiconductor substrate without damaging patterned structure on the substrate using ultra/mega sonic device comprising applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; before bubble cavitation in said liquid damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned. Normally, if f1=f2, then P2 is equal to zero or much less than P1; if P1=P2, then f2 is higher than f1; if the f1<f2, then, P2 can be either equal or less than P1.
    Type: Application
    Filed: May 20, 2015
    Publication date: May 31, 2018
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Jun Wang, Xuejun Li
  • Publication number: 20180071794
    Abstract: A system for controlling damages in cleaning a semiconductor wafer comprising features of patterned structures, the system comprising: a wafer holder for temporary restraining a semiconductor wafer during a cleaning process; an inlet for delivering a cleaning liquid over a surface of the semiconductor wafer; a sonic generator configured to alternately operate at a first frequency and a first power level for a first predetermined period of time and at a second frequency and a second power level for a second predetermined period of time, to impart sonic energy to the cleaning liquid, the first predetermined period of time and the second predetermined period of time consecutively following one another; and a controller programmed to provide the cleaning parameters, wherein at least one of the cleaning parameters is determined such that a percentage of damaged features as a result of the imparting sonic energy is lower than a predetermined threshold.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Jun Wang, Xuejun Li, Xi Wang
  • Publication number: 20180071795
    Abstract: A method for controlling damages in cleaning a semiconductor wafer comprising features of patterned structures, the method comprising: delivering a cleaning liquid over a surface of a semiconductor wafer during a cleaning process; and imparting sonic energy to the cleaning liquid from a sonic transducer during the cleaning process, wherein power is alternately supplied to the sonic transducer at a first frequency and a first power level for a first predetermined period of time and at a second frequency and a second power level for a second predetermined period of time, the first predetermined period of time and the second predetermined period of time consecutively following one another, wherein at least one of the cleaning parameters is determined such that a percentage of damaged features as a result of the imparting sonic energy is lower than a predetermined threshold.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Jun Wang, Xuejun Li, Xi Wang