Patents by Inventor Zhen-Dong Zhu
Zhen-Dong Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11579169Abstract: The present disclosure provides a scanning probe, a method and an apparatus for manufacturing the scanning probe. The scanning probe includes a base and a micro-tip disposed on an end of the base, wherein at least a section of the micro-tip comprises a lateral surface with a concavely curved generatrix. In the method, an end of a probe precursor is immersed in a corrosive solution by having a length direction of the probe precursor inclined with a liquid surface of the corrosive solution. The probe precursor is corroded by the corrosive solution while a corrosion current of the corroding is monitored. The probe precursor is moved away from the corrosive solution after a magnitude of the corrosion current has a plunge. The apparatus includes a container containing the corrosive solution, and a driving device configured to move the probe precursor in the container through a fastener.Type: GrantFiled: September 18, 2021Date of Patent: February 14, 2023Assignee: NATIONAL INSTITUTE OF METROLOGY, CHINAInventors: Zhen-Dong Zhu, Si-Tian Gao, Wei Li
-
Patent number: 11515438Abstract: A solar cell including: a silicon substrate; a back electrode; a doped silicon layer; an upper electrode, wherein the upper electrode includes a plurality of three-dimensional nanostructures extending along a same direction; an electrode lead, wherein a direction of the electrode lead intersects with the direction of the plurality of three-dimensional nanostructures; wherein the three-dimensional nanostructures includes a first rectangular structure, a second rectangular structure, and a triangular prism structure; the first rectangular structure, the second rectangular structure, and the triangular prism structure are stacked, a first width of a bottom surface of the triangular prism structure is equal to a second width of a top surface of the second rectangular structure, and is greater than a third width of a top surface of the first rectangular structure, materials of the first rectangular structure and the triangular prism structure are metal.Type: GrantFiled: May 29, 2018Date of Patent: November 29, 2022Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
-
Publication number: 20220128596Abstract: The present disclosure provides a tip-enhanced Raman spectroscope system. The system includes a laser emitting unit, a laser excitation unit, a first dichroic beam splitter, a first Raman spectrometer, and a confocal detecting unit. The laser excitation unit includes a sample stage and a first scanning probe. The sample stage is configured to have a sample disposed thereon such that a first incident laser beam emitted from the laser emitting unit is transmitted to the sample to excite first scattered light. The first dichroic beam splitter is configured to split a first Raman scattered light from the first Rayleigh scattered light. The first Raman spectrometer is disposed on a first Raman optical path of the first Raman scattered light. The confocal detecting unit is disposed on a first Rayleigh optical path of the first Rayleigh scattered light to image the sample.Type: ApplicationFiled: January 11, 2022Publication date: April 28, 2022Inventors: ZHEN-DONG ZHU, SI-TIAN GAO, WEI LI
-
Patent number: 11268978Abstract: The present disclosure provides a tip-enhanced Raman spectroscope system. The system includes a laser emitting unit, a laser excitation unit, a first dichroic beam splitter, a first Raman spectrometer, and a confocal detecting unit. The laser excitation unit includes a sample stage and a first scanning probe. The sample stage is configured to have a sample disposed thereon such that a first incident laser beam emitted from the laser emitting unit is transmitted to the sample to excite first scattered light. The first dichroic beam splitter is configured to split a first Raman scattered light from the first Rayleigh scattered light. The first Raman spectrometer is disposed on a first Raman optical path of the first Raman scattered light. The confocal detecting unit is disposed on a first Rayleigh optical path of the first Rayleigh scattered light to image the sample.Type: GrantFiled: September 26, 2019Date of Patent: March 8, 2022Assignee: NATIONAL INSTITUTE OF METROLOGY, CHINAInventors: Zhen-Dong Zhu, Si-Tian Gao, Wei Li, Shi Li, Jing-Tao Xu
-
Publication number: 20220003799Abstract: The present disclosure provides a scanning probe, a method and an apparatus for manufacturing the scanning probe. The scanning probe includes a base and a micro-tip disposed on an end of the base, wherein at least a section of the micro-tip comprises a lateral surface with a concavely curved generatrix. In the method, an end of a probe precursor is immersed in a corrosive solution by having a length direction of the probe precursor inclined with a liquid surface of the corrosive solution. The probe precursor is corroded by the corrosive solution while a corrosion current of the corroding is monitored. The probe precursor is moved away from the corrosive solution after a magnitude of the corrosion current has a plunge. The apparatus includes a container containing the corrosive solution, and a driving device configured to move the probe precursor in the container through a fastener.Type: ApplicationFiled: September 18, 2021Publication date: January 6, 2022Inventors: ZHEN-DONG ZHU, SI-TIAN GAO, WEI LI
-
Patent number: 11156636Abstract: The present disclosure provides a scanning probe, a method and an apparatus for manufacturing the scanning probe. The scanning probe includes a base and a micro-tip disposed on an end of the base, wherein at least a section of the micro-tip comprises a lateral surface with a concavely curved generatrix. In the method, an end of a probe precursor is immersed in a corrosive solution by having a length direction of the probe precursor inclined with a liquid surface of the corrosive solution. The probe precursor is corroded by the corrosive solution while a corrosion current of the corroding is monitored. The probe precursor is moved away from the corrosive solution after a magnitude of the corrosion current has a plunge. The apparatus includes a container containing the corrosive solution, and a driving device configured to move the probe precursor in the container through a fastener.Type: GrantFiled: September 25, 2019Date of Patent: October 26, 2021Assignee: NATIONAL INSTITUTE OF METROLOGY, CHINAInventors: Zhen-Dong Zhu, Si-Tian Gao, Wei Li
-
Publication number: 20200103438Abstract: The present disclosure provides a scanning probe, a method and an apparatus for manufacturing the scanning probe. The scanning probe includes a base and a micro-tip disposed on an end of the base, wherein at least a section of the micro-tip comprises a lateral surface with a concavely curved generatrix. In the method, an end of a probe precursor is immersed in a corrosive solution by having a length direction of the probe precursor inclined with a liquid surface of the corrosive solution. The probe precursor is corroded by the corrosive solution while a corrosion current of the corroding is monitored. The probe precursor is moved away from the corrosive solution after a magnitude of the corrosion current has a plunge. The apparatus includes a container containing the corrosive solution, and a driving device configured to move the probe precursor in the container through a fastener.Type: ApplicationFiled: September 25, 2019Publication date: April 2, 2020Applicant: National Institute of Metrology, ChinaInventors: ZHEN-DONG ZHU, SI-TIAN GAO, WEI LI
-
Publication number: 20200103279Abstract: The present disclosure provides a tip-enhanced Raman spectroscope system. The system includes a laser emitting unit, a laser excitation unit, a first dichroic beam splitter, a first Raman spectrometer, and a confocal detecting unit. The laser excitation unit includes a sample stage and a first scanning probe. The sample stage is configured to have a sample disposed thereon such that a first incident laser beam emitted from the laser emitting unit is transmitted to the sample to excite first scattered light. The first dichroic beam splitter is configured to split a first Raman scattered light from the first Rayleigh scattered light. The first Raman spectrometer is disposed on a first Raman optical path of the first Raman scattered light. The confocal detecting unit is disposed on a first Rayleigh optical path of the first Rayleigh scattered light to image the sample.Type: ApplicationFiled: September 26, 2019Publication date: April 2, 2020Applicant: National Institute of Metrology, ChinaInventors: ZHEN-DONG ZHU, SI-TIAN GAO, WEI LI, SHI LI, JING-TAO XU
-
Patent number: 10481096Abstract: A method of detecting single molecule includes: providing a carrier, wherein the carrier includes a substrate, and a plurality of three-dimensional nanostructures are located on the substrate; disposing single molecule samples on the plurality of three-dimensional nanostructures; detecting the single molecule samples with a detector; wherein each three-dimensional nanostructure includes a first rectangular structure, a second rectangular structure, and a triangular prism structure; the first rectangular structure, the second rectangular structure, and the triangular prism structure are stacked in that order, a first width of a bottom surface of the triangular prism structure is equal to a second width of a first top surface of the second rectangular structure and greater than a third width of a second top surface of the first rectangular structure, and the first rectangular structure comprises a first metal and the triangular prism structure comprises a second metal.Type: GrantFiled: May 29, 2018Date of Patent: November 19, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
-
Patent number: 10388621Abstract: A method of making nanoscale devices, the method including: depositing a metal film on a surface of a first substrate; annealing the metal film to form a plurality of metal island structures on the surface of the first substrate; laying metal nanospheres on the surface of the first substrate; baking the first composite structure to make the metal nanospheres become a plurality of metal crystalline balls; forming a photoresist layer on the first surface of the second composite structure; placing a release agent layer on a second substrate, applying an external force to press the photoresist layer on the release agent layer under an inert atmosphere; heating the second composite structure, the photoresist layer, the release agent layer, and the second substrate are and applying voltages in three stages.Type: GrantFiled: April 23, 2018Date of Patent: August 20, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
-
Patent number: 10388833Abstract: A light emitting diode, the light emitting diode including: a first semiconductor layer, an active layer, a second semiconductor layer, wherein a surface of the second semiconductor layer defines a first area; a metallic plasma generating layer; a first electrode; a second electrode; wherein the metallic plasma generating layer includes a plurality of three-dimensional nanostructures, the three-dimensional nanostructure includes a first rectangular structure, a second rectangular structure, and a triangular prism structure, the first rectangular structure, the second rectangular structure, and the triangular prism structure are stacked, the width of the triangular prism structure is equal to the width of the second rectangular structure, and is greater than the width of the first rectangular structure, the first rectangular structure is a metal layer, and the triangular prism structure is a metal layer.Type: GrantFiled: May 29, 2018Date of Patent: August 20, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
-
Patent number: 10267962Abstract: A method of making a pine shaped metal nano-scaled grating, the method including: forming a first metal layer on a substrate, forming an isolation layer on the first metal layer, and locating a second metal layer on the isolation layer; placing a first mask layer on the second metal layer, wherein the first mask layer comprises a body, and the body defines a plurality of openings parallel with and spaced apart from each other; etching the first mask layer and the second metal layer to obtain a plurality of triangular prism structures; etching the isolation layer to obtain a plurality of second rectangular structures using the plurality of triangular prism structures as a first mask; and etching the first metal layer to obtain a plurality of first rectangular structures using the plurality of second rectangular structures as a second mask.Type: GrantFiled: December 22, 2017Date of Patent: April 23, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
-
Patent number: 10215896Abstract: A pine shaped metal nano-scaled grating, the grating including a substrate and a plurality of three-dimensional nanostructures located on the substrate, wherein each three-dimensional nanostructure comprises a first rectangular structure, a second rectangular structure, and a triangular prism structure; the first rectangular structure is located on the substrate, the second rectangular structure is located on the first rectangular structure, the triangular prism structure is located on the second rectangular structure, a first width of a bottom surface of the triangular prism structure is equal to a second width of a first top surface of the second rectangular structure and greater than a third width of a second top surface of the first rectangular structure, and the first rectangular structure comprises a first metal and the triangular prism structure comprises a second metal.Type: GrantFiled: December 22, 2017Date of Patent: February 26, 2019Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Shou-Shan Fan
-
Publication number: 20180351007Abstract: A solar cell including: a silicon substrate; a back electrode; a doped silicon layer; an upper electrode, wherein the upper electrode includes a plurality of three-dimensional nanostructures extending along a same direction; an electrode lead, wherein a direction of the electrode lead intersects with the direction of the plurality of three-dimensional nanostructures; wherein the three-dimensional nanostructures includes a first rectangular structure, a second rectangular structure, and a triangular prism structure; the first rectangular structure, the second rectangular structure, and the triangular prism structure are stacked, a first width of a bottom surface of the triangular prism structure is equal to a second width of a top surface of the second rectangular structure, and is greater than a third width of a top surface of the first rectangular structure, materials of the first rectangular structure and the triangular prism structure are metal.Type: ApplicationFiled: May 29, 2018Publication date: December 6, 2018Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
-
Publication number: 20180351044Abstract: A light emitting diode, the light emitting diode including: a first semiconductor layer, an active layer, a second semiconductor layer, wherein a surface of the second semiconductor layer defines a first area; a metallic plasma generating layer; a first electrode; a second electrode; wherein the metallic plasma generating layer includes a plurality of three-dimensional nanostructures, the three-dimensional nanostructure includes a first rectangular structure, a second rectangular structure, and a triangular prism structure, the first rectangular structure, the second rectangular structure, and the triangular prism structure are stacked, the width of the triangular prism structure is equal to the width of the second rectangular structure, and is greater than the width of the first rectangular structure, the first rectangular structure is a metal layer, and the triangular prism structure is a metal layer.Type: ApplicationFiled: May 29, 2018Publication date: December 6, 2018Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
-
Publication number: 20180348139Abstract: A method of detecting single molecule includes: providing a carrier, wherein the carrier includes a substrate, and a plurality of three-dimensional nanostructures are located on the substrate; disposing single molecule samples on the plurality of three-dimensional nanostructures; detecting the single molecule samples with a detector; wherein each three-dimensional nanostructure includes a first rectangular structure, a second rectangular structure, and a triangular prism structure; the first rectangular structure, the second rectangular structure, and the triangular prism structure are stacked in that order, a first width of a bottom surface of the triangular prism structure is equal to a second width of a first top surface of the second rectangular structure and greater than a third width of a second top surface of the first rectangular structure, and the first rectangular structure comprises a first metal and the triangular prism structure comprises a second metal.Type: ApplicationFiled: May 29, 2018Publication date: December 6, 2018Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
-
Publication number: 20180315724Abstract: A method of making nanoscale devices, the method including: depositing a metal film on a surface of a first substrate; annealing the metal film to form a plurality of metal island structures on the surface of the first substrate; laying metal nanospheres on the surface of the first substrate; baking the first composite structure to make the metal nanospheres become a plurality of metal crystalline balls; forming a photoresist layer on the first surface of the second composite structure; placing a release agent layer on a second substrate, applying an external force to press the photoresist layer on the release agent layer under an inert atmosphere; heating the second composite structure, the photoresist layer, the release agent layer, and the second substrate are and applying voltages in three stages.Type: ApplicationFiled: April 23, 2018Publication date: November 1, 2018Applicants: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
-
Publication number: 20180313986Abstract: A pine shaped metal nano-scaled grating, the grating including a substrate and a plurality of three-dimensional nanostructures located on the substrate, wherein each three-dimensional nanostructure comprises a first rectangular structure, a second rectangular structure, and a triangular prism structure; the first rectangular structure is located on the substrate, the second rectangular structure is located on the first rectangular structure, the triangular prism structure is located on the second rectangular structure, a first width of a bottom surface of the triangular prism structure is equal to a second width of a first top surface of the second rectangular structure and greater than a third width of a second top surface of the first rectangular structure, and the first rectangular structure comprises a first metal and the triangular prism structure comprises a second metal.Type: ApplicationFiled: December 22, 2017Publication date: November 1, 2018Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
-
Publication number: 20180313987Abstract: A method of making a pine shaped metal nano-scaled grating, the method including: forming a first metal layer on a substrate, forming an isolation layer on the first metal layer, and locating a second metal layer on the isolation layer; placing a first mask layer on the second metal layer, wherein the first mask layer comprises a body, and the body defines a plurality of openings parallel with and spaced apart from each other; etching the first mask layer and the second metal layer to obtain a plurality of triangular prism structures; etching the isolation layer to obtain a plurality of second rectangular structures using the plurality of triangular prism structures as a first mask; and etching the first metal layer to obtain a plurality of first rectangular structures using the plurality of second rectangular structures as a second mask.Type: ApplicationFiled: December 22, 2017Publication date: November 1, 2018Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
-
Patent number: 9798052Abstract: A hollow-structure metal grating is provided. The hollow-structure metal grating includes a substrate, a number of connecting metal layers, and a number of hollow metal protrusions spaced and located on a surface of the substrate. A space is defined between each of the number of hollow metal protrusions and the substrate.Type: GrantFiled: April 28, 2014Date of Patent: October 24, 2017Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Zhen-Dong Zhu, Qun-Qing Li, Ben-Feng Bai, Shou-Shan Fan