Patents by Inventor Zhenhong Fu

Zhenhong Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9911773
    Abstract: An image sensor includes photodiodes arranged in semiconductor material. Each of the photodiodes is identically sized and is fabricated in the semiconductor material with identical semiconductor processing conditions. The photodiodes are organized into virtual large-small groupings including a first photodiode and a second photodiode. Microlenses are disposed over the semiconductor material with each of microlenses disposed over a respective photodiode. A first microlens is disposed over the first photodiode, and a second microlens is disposed over the second photodiode. A mask is disposed between the first microlens and the first photodiode. The mask includes an opening through which a first portion of incident light directed through the first microlens is directed to the first photodiode. A second portion of the incident light directed through the first microlens is blocked by the mask from reaching the first photodiode. There is no mask between the second microlens and the second photodiode.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: March 6, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Dajiang Yang, Gang Chen, Oray Orkun Cellek, Zhenhong Fu, Chen-Wei Lu, Duli Mao, Dyson H. Tai
  • Patent number: 9865642
    Abstract: A front-side-interconnect (FSI) red-green-blue-infrared (RGB-IR) photosensor array has photosensors of a first type with a diffused N-type region in a P-type well, the P-type well diffused into a high resistivity semiconductor layer; photosensors of a second type, with a deeper diffused N-type region in a P-type well, the P-type well; and photosensors of a third type with a diffused N-type region diffused into the high resistivity semiconductor layer underlying all of the other types of photosensors. In embodiments, photosensors of a fourth type have a diffused N-type region in a P-type well, the N-type region deeper than the N-type region of photosensors of the first and second types.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 9, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Zhenhong Fu, Dajiang Yang, Xianmin Yi, Gang Chen, Sing-Chung Hu, Duli Mao
  • Publication number: 20160372507
    Abstract: An image sensor includes photodiodes arranged in semiconductor material. Each of the photodiodes is identically sized and is fabricated in the semiconductor material with identical semiconductor processing conditions. The photodiodes are organized into virtual large-small groupings including a first photodiode and a second photodiode. Microlenses are disposed over the semiconductor material with each of microlenses disposed over a respective photodiode. A first microlens is disposed over the first photodiode, and a second microlens is disposed over the second photodiode. A mask is disposed between the first microlens and the first photodiode. The mask includes an opening through which a first portion of incident light directed through the first microlens is directed to the first photodiode. A second portion of the incident light directed through the first microlens is blocked by the mask from reaching the first photodiode. There is no mask between the second microlens and the second photodiode.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 22, 2016
    Inventors: Dajiang Yang, Gang Chen, Oray Orkun Cellek, Zhenhong Fu, Chen-Wei Lu, Duli Mao, Dyson H. Tai
  • Publication number: 20160358969
    Abstract: A front-side-interconnect (FSI) red-green-blue-infrared (RGB-IR) photosensor array has photosensors of a first type with a diffused N-type region in a P-type well, the P-type well diffused into a high resistivity semiconductor layer; photosensors of a second type, with a deeper diffused N-type region in a P-type well, the P-type well; and photosensors of a third type with a diffused N-type region diffused into the high resistivity semiconductor layer underlying all of the other types of photosensors. In embodiments, photosensors of a fourth type have a diffused N-type region in a P-type well, the N-type region deeper than the N-type region of photosensors of the first and second types.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Inventors: Zhenhong Fu, Dajiang Yang, Xianmin Yi, Gang Chen, Sing-Chung Hu, Duli Mao
  • Patent number: 9419044
    Abstract: A pixel cell includes a storage transistor disposed in a semiconductor substrate. The storage transistor includes a storage gate disposed over the semiconductor substrate, and a storage gate implant that is annealed and has a gradient profile in the semiconductor substrate under the storage transistor gate to store image charge accumulated by a photodiode disposed in the semiconductor substrate. A transfer transistor is disposed in the semiconductor substrate and is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. The transfer transistor includes a transfer gate disposed over the semiconductor substrate. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a read out node. The output transistor includes an output gate disposed over the semiconductor substrate.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: August 16, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Dajiang Yang, Gang Chen, Zhenhong Fu, Duli Mao, Eric A. G. Webster, Sing-Chung Hu, Dyson H. Tai
  • Publication number: 20150303235
    Abstract: A pixel cell includes a storage transistor disposed in a semiconductor substrate. The storage transistor includes a storage gate disposed over the semiconductor substrate, and a storage gate implant that is annealed and has a gradient profile in the semiconductor substrate under the storage transistor gate to store image charge accumulated by a photodiode disposed in the semiconductor substrate. A transfer transistor is disposed in the semiconductor substrate and is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. The transfer transistor includes a transfer gate disposed over the semiconductor substrate. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a read out node. The output transistor includes an output gate disposed over the semiconductor substrate.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Dajiang Yang, Gang Chen, Zhenhong Fu, Duli Mao, Eric A. G. Webster, Sing-Chung Hu, Dyson H. Tai
  • Patent number: 8933494
    Abstract: A pixel cell includes a storage transistor including a deep implant storage region having a first polarity is implanted in a semiconductor substrate to store image charge accumulated by a photodiode. A transfer transistor is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a readout node. A first shallow implant region having the first polarity is implanted in the semiconductor substrate under a first spacer region between a transfer gate of the transfer transistor and a storage gate of the storage transistor. A second shallow implant region having the first polarity is implanted in the semiconductor substrate under a second spacer region between the storage gate and the output gate.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: January 13, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sing-Chung Hu, Dajiang Yang, Zhenhong Fu
  • Patent number: 8809925
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion (“FD”) region, and a transfer device. The photosensitive element is disposed in a substrate layer for accumulating an image charge in response to light. The FD region is disposed in the substrate layer to receive the image charge from the photosensitive element. The transfer device is disposed between the photosensitive element and the FD region to selectively transfer the image charge from the photosensitive element to the FD region. The transfer device includes a gate, a buried channel dopant region and a surface channel region. The gate is disposed between the photosensitive element and the FD region. The buried channel dopant region is disposed adjacent to the FD region and underneath the gate. The surface channel region is disposed between the buried channel dopant region and the photosensitive element and disposed underneath the gate.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: August 19, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Hsin-Chih Tai, Duli Mao, Zhenhong Fu
  • Publication number: 20140103410
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion (“FD”) region, and a transfer device. The photosensitive element is disposed in a substrate layer for accumulating an image charge in response to light. The FD region is dispose in the substrate layer to receive the image charge from the photosensitive element. The transfer device is disposed between the photosensitive element and the FD region to selectively transfer the image charge from the photosensitive element to the FD region. The transfer device includes a gate, a buried channel dopant region and a surface channel region. The gate is disposed between the photosensitive element and the FD region. The buried channel dopant region is disposed adjacent to the FD region and underneath the gate. The surface channel region is disposed between the buried channel dopant region and the photosensitive element and disposed underneath the gate.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Gang Chen, Hsin-Chih Tai, Duli Mao, Zhenhong Fu