Patents by Inventor Zhenqiang Ma

Zhenqiang Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140209977
    Abstract: Semiconductor trilayer structures that are doped and strained are provided. Also provided are mechanically flexible transistors, including radiofrequency transistors, incorporating the trilayer structures and methods for fabricating the trilayer structures and transistors. The trilayer structures comprise a first layer of single-crystalline semiconductor material, a second layer of single-crystalline semiconductor material and a third layer of single-crystalline semiconductor material. In the structures, the second layer is in contact with and sandwiched between the first and third layers and the first layer is selectively doped to provide one or more doped regions in the layer.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Jung-Hun Seo, Max G. Lagally
  • Publication number: 20140134793
    Abstract: The present invention provides continuous, free-standing metal oxide films and methods for making said films. The methods are able to produce large-area, flexible, thin films having one or more continuous, single-crystalline metal oxide domains. The methods include the steps of forming a surfactant monolayer at the surface of an aqueous solution, wherein the headgroups of the surfactant molecules provide a metal oxide film growth template. When metal ions in the aqueous solution are exposed to the metal oxide film growth template in the presence of hydroxide ions under suitable conditions, a continuous, free-standing metal oxide film can be grown from the film growth template downward into the aqueous solution.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 15, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Xudong Wang, Zhenqiang Ma, Fei Wang, Jung-Hun Seo
  • Patent number: 8698263
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 15, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Publication number: 20130229776
    Abstract: The present invention provides flexible devices, such as integrated circuits, having a multilevel electronic device structure including two or more electronic components. The electronic components within the structure are electrically connected by an interconnect structure having multiple interconnect levels. In addition to the multilevel electronic device structure, the flexible devices include an elastomeric material disposed around the interconnect levels, including within the spaces between the interconnect levels.
    Type: Application
    Filed: December 21, 2012
    Publication date: September 5, 2013
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Guoxuan Qin, Namki Cho
  • Patent number: 8502218
    Abstract: The present invention provides continuous, free-standing metal oxide films and methods for making said films. The methods are able to produce large-area, flexible, thin films having one or more continuous, single-crystalline metal oxide domains. The methods include the steps of forming a surfactant monolayer at the surface of an aqueous solution, wherein the headgroups of the surfactant molecules provide a metal oxide film growth template. When metal ions in the aqueous solution are exposed to the metal oxide film growth template in the presence of hydroxide ions under suitable conditions, a continuous, free-standing metal oxide film can be grown from the film growth template downward into the aqueous solution.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 6, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xudong Wang, Zhenqiang Ma, Fei Wang, Jung-Hun Seo
  • Publication number: 20120273913
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Application
    Filed: July 6, 2012
    Publication date: November 1, 2012
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Publication number: 20120228582
    Abstract: Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 13, 2012
    Inventors: Zhenqiang Ma, Weidong Zhou
  • Patent number: 8232617
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: July 31, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Patent number: 8217410
    Abstract: Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: July 10, 2012
    Assignees: Wisconsin Alumni Research Foundation, Board of Regents, The University of Texas System
    Inventors: Zhenqiang Ma, Weidong Zhou
  • Patent number: 8089073
    Abstract: This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: January 3, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Paul G. Evans, Max G. Lagally, Zhenqiang Ma, Hao-Chih Yuan, Guogong Wang, Mark A. Eriksson
  • Patent number: 7960218
    Abstract: This invention provides methods for fabricating high speed TFTs from silicon-on-insulator and bulk single crystal semiconductor substrates, such as Si(100) and Si(110) substrates. The TFTs may be designed to have a maximum frequency of oscillation of 3 GHz, or better.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: June 14, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Hao-Chih Yuan, Guogong Wang
  • Patent number: 7902635
    Abstract: Improved radio frequency gain in a silicon-based bipolar transistor may be provided by adoption of a common-base configuration, preferably together with excess doping of the base to provide extremely low base resistances boosting performance over similar common-emitter designs.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: March 8, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Ningyue Jiang
  • Publication number: 20100327355
    Abstract: This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
    Type: Application
    Filed: September 8, 2010
    Publication date: December 30, 2010
    Inventors: Hao-Chih Yuan, Guogong Wang, Mark A. Eriksson, Paul G. Evans, Max G. Lagally, Zhenqiang Ma
  • Publication number: 20100308429
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 9, 2010
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Patent number: 7830208
    Abstract: A common-base amplifier for a bipolar junction transistor or a heterojunction bipolar transistor employs an active current source output biasing to provide for improved power output in a power saturation region providing increased power for a given transistor area such as may be advantageous in mobile radio transmitters or the like.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 9, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Guogong Wang, Guoxuan Qin
  • Patent number: 7812353
    Abstract: This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: October 12, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Hao-Chih Yuan, Guogong Wang, Mark A. Eriksson, Paul G. Evans, Max G. Lagally, Zhenqiang Ma
  • Publication number: 20100243986
    Abstract: Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Zhenqiang Ma, Weidong Zhou
  • Patent number: 7777290
    Abstract: The present invention provides high-speed, high-efficiency PIN diodes for use in photodetector and CMOS imagers. The PIN diodes include a layer of intrinsic semiconducting material, such as intrinsic Ge or intrinsic GeSi, disposed between two tunneling barrier layers of silicon oxide. The two tunneling barrier layers are themselves disposed between a layer of n-type silicon and a layer of p-type silicon.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: August 17, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Zhenqiang Ma
  • Patent number: 7705425
    Abstract: A high-power solid-state transistor structure comprised of a plurality of emitter or gate fingers arranged in a uniform or non-uniform manner to provide improved high power performance is disclosed. Each of the fingers is associated with a corresponding one of a plurality of sub-cells. In an exemplary embodiment, the fingers may be arranged in a 1-D or 2-D form having a “hollow-center” layout where one or more elongated emitter fingers or subcells are left out during design or disconnected during manufacture. In another exemplary embodiment, the fingers may be arranged in a 1-D or 2-D form having one or more “arc-shaped” rows that includes one or more elongated emitter fingers or subcells. The structure can be practically implemented and the absolute thermal stability can be maintained for very high power transistors with reduced adverse effects due to random variation in the manufacturing and design process.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 27, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Ningyue Jiang
  • Publication number: 20100078722
    Abstract: This invention provides methods for fabricating high speed TFTs from silicon-on-insulator and bulk single crystal semiconductor substrates, such as Si(100) and Si(110) substrates. The TFTs may be designed to have a maximum frequency of oscillation of 3 GHz, or better.
    Type: Application
    Filed: September 8, 2006
    Publication date: April 1, 2010
    Inventors: Zhenqiang Ma, Hao-Chih Yuan, Guogong Wang