Patents by Inventor Zhi-Wen Sun

Zhi-Wen Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9034690
    Abstract: Embodiments described herein provide methods for forming indium-gallium-zinc oxide (IGZO) devices. A substrate is provided. An IGZO layer is formed above the substrate. A copper-containing layer is formed above the IGZO layer. A wet etch process is performed on the copper-containing layer to form a source region and a drain region above the IGZO layer. The performing of the wet etch process on the copper-containing layer includes exposing the copper-containing layer to an etching solution including a peroxide compound and one of citric acid, formic acid, malonic acid, lactic acid, etidronic acid, phosphonic acid, or a combination thereof.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: May 19, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Jeroen Van Duren, Sang Lee, Zhi-Wen Sun
  • Patent number: 9023137
    Abstract: Embodiments of the current invention describe a method of plating platinum selectively on a copper film using a self-initiated electroless process. In particular, platinum films are plated onto very thin copper films having a thickness of less than 300 angstroms. The electroless plating solution and the resulting structure are also described. This process has applications in the semiconductor processing of logic devices, memory devices, and photovoltaic devices.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: May 5, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Bob Kong, Igor Ivanov, Zhi-Wen Sun, Jinhong Tong
  • Patent number: 9011969
    Abstract: Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxynitride layer is formed over the transparent substrate. The metal oxynitride layer includes a first metal and a second metal. A reflective layer is formed over the transparent substrate.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: April 21, 2015
    Assignees: Intermolecular, Inc., Guardian Industries Corp.
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Yiwei Lu, Minh Anh Nguyen, Zhi-Wen Sun, Guowen Ding, Jingyu Lao, Hien Minh Huu Le
  • Patent number: 8906709
    Abstract: Provided are methods of high productivity combinatorial (HPC) inspection of semiconductor substrates. A substrate includes two layers of dissimilar materials interfacing each other, such as a stack of a silicon bottom layer and an indium gallium arsenide top layer. The dissimilar materials have one or more of thermal, structural, and lattice mismatches. As a part of the inspection, the top layer is etched in a combinatorial manner. Specifically, the top layer is divided into multiple different site-isolated regions. One such region may be etched using different process conditions from another region. Specifically, etching temperature, etching duration and/or etchant composition may vary among the site-isolated regions. After combinatorial etching, each region is inspected to determine its etch-pit density (EPD) value. These values may be then analyzed to determine an overall EPD value for the substrate, which may involve discarding EPD values for over-etched and under-etched regions.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: December 9, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Khaled Ahmed, Frank Greer, George Mirth, Zhi-Wen Sun
  • Patent number: 8900423
    Abstract: A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Sun, Yu Wang
  • Patent number: 8859427
    Abstract: Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 14, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Bob Kong, Tony Chiang, Chi-I Lang, Zhi-Wen Sun, Jinhong Tong
  • Patent number: 8852679
    Abstract: Embodiments of the current invention describe a high performance combinatorial method and apparatus for the combinatorial development of coatings by a dip-coating process. The dip-coating process may be used for multiple applications, including forming coatings from varied sol-gel formulations, coating substrates uniformly with particles to combinatorially test particle removal formulations, and the dipping of substrates into texturing formulations to combinatorially develop the texturing formulations.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 7, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Nikhil D. Kalyankar, Nitin Kumar, Zhi-Wen Sun, Kenneth A. Williams
  • Publication number: 20140273341
    Abstract: Embodiments described herein provide methods for forming indium-gallium-zinc oxide (IGZO) devices. A substrate is provided. An IGZO layer is formed above the substrate. A copper-containing layer is formed above the IGZO layer. A wet etch process is performed on the copper-containing layer to form a source region and a drain region above the IGZO layer. The performing of the wet etch process on the copper-containing layer includes exposing the copper-containing layer to an etching solution including a peroxide compound and one of citric acid, formic acid, malonic acid, lactic acid, etidronic acid, phosphonic acid, or a combination thereof.
    Type: Application
    Filed: December 18, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Jeroen Van Duren, Sang Lee, Zhi-Wen Sun
  • Publication number: 20140273407
    Abstract: Methods and compositions for the surface cleaning and passivation of CdTe substrates usable in solar cells are disclosed. In some embodiments amine-containing chelators are used and in other embodiments phosphorus-containing chelators are used.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: FIRST SOLAR, INC.
    Inventors: Scott Christensen, Scott Jewhurst, Minh Huu Le, Haifan Liang, Hao Lin, Wei Liu, Minh Anh Nguyen, Zhi Wen Sun, Gang Xiong
  • Publication number: 20140231704
    Abstract: The present disclosure includes a texture formulation that includes an aliphatic diol, an alkaline compound and water which provides a consistent textured region across a silicon surface suitable for solar cell applications. The current invention describes silicon texturing formulations that include at least one high boiling point additive. The high boiling point additive may be a derivative compound of propylene glycol or a derivative compound of ethylene glycol. Processes for texturing a crystalline silicon substrate using these formulations are also described. Additionally, a combinatorial method of optimizing the textured surface of a crystalline silicon substrate is described.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Zhi-Wen Sun, Nikhil Kalyankar, Nitin Kumar, Minh Anh Nguyen, Sagar Vijay
  • Patent number: 8784934
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignees: Intermolecular, Inc., Guardian Industries
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Guowen Ding, Muhammad Imran, Jingyu Lao, Hien Minh Huu Le, Yiwei Lu, Zhi-Wen Sun
  • Patent number: 8778514
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignees: Intermolecular, Inc., Guardian Industries Corporation
    Inventors: Minh Huu Le, Zhi-Wen Sun, Guowen Ding, Mohd Hassan, Sandeep Jaggi, Muhammad Imran, Jingyu Lao, Yiwei Lu, Richard Blacker
  • Patent number: 8759231
    Abstract: The present disclosure includes a texture formulation that includes an aliphatic diol, an alkaline compound and water which provides a consistent textured region across a silicon surface suitable for solar cell applications. Processes for texturing a crystalline silicon substrate using these formulations are also described.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: June 24, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Zhi-Wen Sun, Sagar Vijay
  • Publication number: 20140170049
    Abstract: A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Sun, Yu Wang
  • Patent number: 8747626
    Abstract: A method for forming and protecting high quality bismuth oxide films comprises depositing a transparent thin film on a substrate comprising one of Si, alkali metals, or alkaline earth metals. The transparent thin film is stable at room temperature and at higher temperatures and serves as a diffusion barrier for the diffusion of impurities from the substrate into the bismuth oxide. Reactive sputtering, sputtering from a compound target, or reactive evaporation are used to deposit a bismuth oxide film above the diffusion barrier.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 10, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20140048013
    Abstract: Zinc oxide layer, including pure zinc oxide and doped zinc oxide, can be deposited with preferred crystal orientation and improved electrical conductivity by employing a seed layer comprising a metallic element. By selecting metallic elements that can easily crystallized at low temperature on glass substrates, together with possessing preferred crystal orientations and sizes, zinc oxide layer with preferred crystal orientation and large grain size can be formed, leading to potential optimization of transparent conductive oxide layer stacks.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Guowen Ding, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20140007938
    Abstract: A method for forming copper indium gallium (sulfide) selenide (CIGS) solar cells, cadmium telluride (CdTe) solar cells, and copper zinc tin (sulfide) selenide (CZTS) solar cells using laser annealing techniques to anneal the absorber and/or the buffer layers. Laser annealing may result in better crystallinity, lower surface roughness, larger grain size, better compositional homogeneity, a decrease in recombination centers, and increased densification. Additionally, laser annealing may result in the formation of non-equilibrium phases with beneficial results.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 9, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Haifan Liang, Zhi-Wen Sun, Jeroen Van Duren
  • Publication number: 20130340648
    Abstract: Embodiments of the current invention describe a method of plating platinum selectively on a copper film using a self-initiated electroless process. In particular, platinum films are plated onto very thin copper films having a thickness of less than 300 angstroms. The electroless plating solution and the resulting structure are also described. This process has applications in the semiconductor processing of logic devices, memory devices, and photovoltaic devices.
    Type: Application
    Filed: August 29, 2013
    Publication date: December 26, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Bob Kong, Igor Ivanov, Zhi-Wen Sun, Jinhong Tong
  • Patent number: 8609475
    Abstract: Methods for forming a NiO film on a substrate for use with a resistive switching memory device are presenting including: preparing a nickel ion solution; receiving the substrate, where the substrate includes a bottom electrode, the bottom electrode utilized as a cathode; forming a Ni(OH)2 film on the substrate, where the forming the Ni(OH)2 occurs at the cathode; and annealing the Ni(OH)2 film to form the NiO film, where the NiO film forms a portion of a resistive switching memory element. In some embodiments, methods further include forming a top electrode on the NiO film and before the forming the Ni(OH)2 film, pre-treating the substrate. In some embodiments, methods are presented where the bottom electrode and the top electrode are a conductive material.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: December 17, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Zhi-Wen Sun, Tony Chiang, Chi-I Lang, Jinhong Tong
  • Publication number: 20130319847
    Abstract: A method for making low emissivity panels, comprising forming highly smooth layers of silver on highly smooth layers of base or seed films. The highly smooth layers can be achieved by collimated sputtering, lowering the angular distribution of the sputtered particles when reaching the substrate.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun