Patents by Inventor Zhong You

Zhong You has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962261
    Abstract: An electronic motor control system provides selectable linear and pulse-width modulated (PWM) operation without generating cross-over distortion. The system includes an output stage that has a pair of push-pull drivers each coupled to a terminal of the motor. The electronic motor control system also includes a pulse-width modulated (PWM) driver for providing pulse-width modulated drive signals to an input of the output stage when the pulse-width modulated mode is selected and a linear amplifier stage that provides a linear analog signal to the input of the output stage in linear mode, so that both drivers are operated to supply the current to the motor. In pulse-width modulated mode, a driver is selected for PWM operation, while the other driver is operated to supply a fixed voltage. A feedback control loop senses motor current and provides outputs to the pulse-width modulator and the linear amplifier stage.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: April 16, 2024
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Vamsikrishna Parupalli, Mark May, Eric B. Smith, Zhong You
  • Publication number: 20240053425
    Abstract: An integrated circuit (IC) provides on-line, wafer-level, die-level, or package-level thermal calibration of an integrated thin-film resistor, by thermally enclosing the thin-film resistor with metal layers formed above and below the thin-film resistor along its length and width. Metal vias thermally couple the metal layers to the substrate to at least partially equalize the temperature of the metal layers and the thin-film resistor and the substrate. A controllable heat source, which may be provided by another thin-film resistor integrated on or below the substrate, and a reference temperature sensor provide heating/calibration measurement of the resistance of the thin-film resistor over a range of temperature. The reference temperature sensor may be provided within the IC, for example, integrated on the substrate or packaged with the die containing the thin-film resistor, or may be otherwise thermally coupled to the metal layers, e.g., by an extension of one of the metal layers.
    Type: Application
    Filed: August 9, 2022
    Publication date: February 15, 2024
    Inventors: Vamsikrishna Parupalli, Zhong You
  • Publication number: 20240040187
    Abstract: Disclosed is a live broadcast system for assisting remote home rehabilitation. The system includes: an anchor client, a Bluetooth heart rate component, a user client, and a movement video library. The anchor client is configured to display information of a live class, create the live class, start the live class, cancel the live class, interact with a user during a live broadcast, and monitor exercise status of the user and an overview of an exercise status of all users participating in the live class after the live broadcast. The user client is configured to display information of a live class, make an appointment to participate in the live class, enter the live class, provide real-time visual feedback on an exercise mode of a user, display a real-time heart rate of the user, cancel the live class, interact with an anchor during a live broadcast, and display after-class information.
    Type: Application
    Filed: December 1, 2022
    Publication date: February 1, 2024
    Applicant: Recovery Plus USA Inc.
    Inventors: Wen Zhou, Chi Lei, Yi Fan, Zhong You, Xi Chen, Xiang Zhang
  • Publication number: 20230366747
    Abstract: A current digital-to-analog converter may be used in a system for measuring temperature of a thermistor, with mismatch reduction techniques applied to digital-to-analog converter elements of the digital-to-analog converter in order to maximize accuracy and precisions of the temperature measurement.
    Type: Application
    Filed: March 28, 2023
    Publication date: November 16, 2023
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Vamsikrishna PARUPALLI, Zhong YOU, Johann G. GABORIAU, Amar VELLANKI, Vikrant ARUMUGAM
  • Publication number: 20230366754
    Abstract: A system and method provide on-line, wafer-level, die-level, or package-level thermal calibration of an integrated measurement resistor with a single temperature insertion. The system includes a measurement resistor integrated on a substrate with an unknown temperature coefficient and a temperature reference sensor thermally coupled to the measurement resistor. A measurement circuit measures an indication of a resistance of the measurement resistor. An electrically-controllable integrated heat source is operated by a controller to change a temperature of the measurement resistor and the temperature reference sensor and stores values of the resistance indication and the sensed temperature corresponding to multiple temperatures of the temperature of the measurement resistor and the temperature reference sensor.
    Type: Application
    Filed: August 9, 2022
    Publication date: November 16, 2023
    Inventors: Zhong You, Vamsikrishna Parupalli, Johann G. Gaboriau
  • Publication number: 20230253561
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 10, 2023
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 11652207
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: May 16, 2023
    Assignee: A123 Systems LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 11537242
    Abstract: A system may include a resistive-inductive-capacitive sensor, a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a mechanical member relative to the resistive-inductive-capacitive sensor. The system may also include a Q factor enhancer communicatively coupled to the resistive-inductive-capacitive sensor and configured to control a Q factor of the resistive-inductive-capacitive sensor.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: December 27, 2022
    Assignee: Cirrus Logic, Inc.
    Inventors: Tejasvi Das, Siddharth Maru, Zhong You, Luke Lapointe
  • Patent number: 11518548
    Abstract: A spacecraft is disclosed, comprising a deployable spacecraft body (110) comprising a plurality of sub-systems (321-324) for controlling operations of the spacecraft, and a plurality of panels (101, 102) and a plurality of hinges (112-115) each connecting adjacent ones of the plurality of panels, the hinges being arranged to permit the plurality of panels to be folded into a stowed configuration and unfolded into a deployed configuration, wherein the plurality of sub-systems are fixed to and supported by one or more of the plurality of panels. By forming the body of the spacecraft from a deployable structure, the overall size of the spacecraft can be significantly reduced in the stowed configuration.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 6, 2022
    Assignee: Oxford Space Systems Limited
    Inventors: Michael David Lawton, Zhong You, Deborah Fellows
  • Publication number: 20220337181
    Abstract: An electronic motor control system provides selectable linear and pulse-width modulated (PWM) operation without generating cross-over distortion. The system includes an output stage that has a pair of push-pull drivers each coupled to a terminal of the motor. The electronic motor control system also includes a pulse-width modulated (PWM) driver for providing pulse-width modulated drive signals to an input of the output stage when the pulse-width modulated mode is selected and a linear amplifier stage that provides a linear analog signal to the input of the output stage in linear mode, so that both drivers are operated to supply the current to the motor. In pulse-width modulated mode, a driver is selected for PWM operation, while the other driver is operated to supply a fixed voltage. A feedback control loop motor current and provides outputs to the pulse-width modulator the linear amplifier stage.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Inventors: Vamsikrishna Parupalli, Mark May, Eric B. Smith, Zhong You
  • Patent number: 11204670
    Abstract: A system may include a resistive-inductive-capacitive sensor, a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to at a plurality of periodic intervals, measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a mechanical member relative to the resistive-inductive-capacitive sensor. The system may also include a driver configured to drive the resistive-inductive-capacitive sensor at a driving frequency and a driving amplitude, wherein at least one of the driving frequency and the driving amplitude varies among the plurality of periodic intervals.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: December 21, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Siddharth Maru, Tejasvi Das, Luke LaPointe, Srdjan Marijanovic, Zhong You, Drew Kinney, Anthony S. Doy, Eric J. King
  • Patent number: 11119138
    Abstract: A method may include applying an excitation signal to a capacitor of the capacitive sensor which causes generation of a modulated signal from an input signal indicative of a variance in a capacitance of the capacitor, detecting the modulated signal with a detector to generate a detected modulated signal that has a phase shift relative to the excitation signal, demodulating the detected modulated signal into an in-phase component and a quadrature component using a reference signal, nullifying the quadrature component by setting a phase of the reference signal relative to the excitation signal to compensate for the phase shift, and outputting the in-phase component as an unmodulated output signal representative of the capacitance.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: September 14, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Vikrant Arumugam, Amar Vellanki, Vamsikrishna Parupalli, Zhong You, Johann G. Gaboriau, John L. Melanson
  • Patent number: 11092657
    Abstract: A system may include a resonant phase sensing system comprising a resistive-inductive-capacitive sensor and a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor, and a compensation circuit. The measurement circuit may be configured to use a phase detector to measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a metal plate relative to the resistive-inductive-capacitive sensor. The compensation circuit may be configured to detect a change in a physical property associated with the resistive-inductive-capacitive sensor other than the displacement and compensate the phase information to correct for the change in the physical property.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 17, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Siddharth Maru, Tejasvi Das, Zhong You
  • Patent number: 11070179
    Abstract: An apparatus measures a speaker impedance. A DAC converts a known digital input signal to an audio frequency first analog voltage signal. Resistors with known resistance attenuate the first analog voltage signal to generate a current. The known resistance effectively determines the current because the known resistance is high relative to the speaker impedance. The current is sourced into the speaker to generate a second analog voltage signal. The known resistance is sufficiently high to cause the second analog voltage signal to be inaudible as transduced by the speaker. An amplifier amplifies the second analog voltage signal with a known gain to generate a third analog voltage signal. An ADC converts the third analog voltage signal to a digital output signal. A processing element calculates the impedance of the speaker proportional to the digital output signal based on the known digital input signal, the known resistance, and the known gain.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 20, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Frank Cheng, Ruoxin Jiang, Zhong You
  • Patent number: 11035894
    Abstract: A method for measuring a capacitive sensor output may include applying an excitation signal to a capacitor of the capacitive sensor which causes generation of a modulated signal from a baseband signal, wherein the excitation signal is of a carrier frequency which is higher than frequency content of the baseband signal, demodulating the modulated signal to generate an intermediate signal representative of a capacitance of the capacitor wherein the demodulating is based, at least in part, on the excitation signal, converting the intermediate signal into a pulse-density modulated output signal with a pulse-density modulator, and shaping a noise transfer function of the pulse-density modulator to have an approximate zero at the carrier frequency.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 15, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Amar Vellanki, Zhong You, Johann G. Gaboriau
  • Patent number: 11016572
    Abstract: A system may include a tactile actuator for providing tactile feedback and a resonant phase sensing system. The resonant phase sensing system may include a resistive-inductive-capacitive sensor and a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and the tactile actuator. The resistive-inductive-capacitive sensor may be configured to measure phase information associated with the resistive-inductive-capacitive sensor, based on the phase information, detect an indication of human interaction with the system proximate to the resistive-inductive-capacitive sensor, and trigger the tactile actuator to generate tactile feedback responsive to detecting the indication of human interaction.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: May 25, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Srdjan Marijanovic, Drew Kinney, Luke Lapointe, Siddharth Maru, Tejasvi Das, Anthony S. Doy, Zhong You
  • Publication number: 20210124444
    Abstract: A system may include a resistive-inductive-capacitive sensor, a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to at a plurality of periodic intervals, measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a mechanical member relative to the resistive-inductive-capacitive sensor. The system may also include a driver configured to drive the resistive-inductive-capacitive sensor at a driving frequency and a driving amplitude, wherein at least one of the driving frequency and the driving amplitude varies among the plurality of periodic intervals.
    Type: Application
    Filed: January 6, 2021
    Publication date: April 29, 2021
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Siddharth MARU, Tejasvi DAS, Luke LAPOINTE, Srdjan MARIJANOVIC, Zhong YOU, Drew KINNEY, Anthony S. DOY, Eric J. KING
  • Publication number: 20210075384
    Abstract: An apparatus measures a speaker impedance. A DAC converts a known digital input signal to an audio frequency first analog voltage signal. Resistors with known resistance attenuate the first analog voltage signal to generate a current. The known resistance effectively determines the current because the known resistance is high relative to the speaker impedance. The current is sourced into the speaker to generate a second analog voltage signal. The known resistance is sufficiently high to cause the second analog voltage signal to be inaudible as transduced by the speaker. An amplifier amplifies the second analog voltage signal with a known gain to generate a third analog voltage signal. An ADC converts the third analog voltage signal to a digital output signal. A processing element calculates the impedance of the speaker proportional to the digital output signal based on the known digital input signal, the known resistance, and the known gain.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Frank Cheng, Ruoxin Jiang, Zhong You
  • Patent number: 10942610
    Abstract: A system may include a resistive-inductive-capacitive sensor, a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor and configured to at a plurality of periodic intervals, measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a mechanical member relative to the resistive-inductive-capacitive sensor. The system may also include a driver configured to drive the resistive-inductive-capacitive sensor at a driving frequency and a driving amplitude, wherein at least one of the driving frequency and the driving amplitude varies among the plurality of periodic intervals.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: March 9, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Siddharth Maru, Tejasvi Das, Luke Lapointe, Srdjan Marijanovic, Zhong You, Drew Kinney, Anthony S. Doy, Eric J. King
  • Publication number: 20210061496
    Abstract: A spacecraft is disclosed, comprising a deployable spacecraft body (110) comprising a plurality of sub-systems (321-324) for controlling operations of the spacecraft, and a plurality of panels (101, 102) and a plurality of hinges (112-115) each connecting adjacent ones of the plurality of panels, the hinges being arranged to permit the plurality of panels to be folded into a stowed configuration and unfolded into a deployed configuration, wherein the plurality of sub-systems are fixed to and supported by one or more of the plurality of panels. By forming the body of the spacecraft from a deployable structure, the overall size of the spacecraft can be significantly reduced in the stowed configuration.
    Type: Application
    Filed: March 7, 2019
    Publication date: March 4, 2021
    Applicant: Oxford Space Systems Limited
    Inventors: Michael David LAWTON, Zhong YOU, Deborah FELLOWS