Patents by Inventor Zhongnong Jiang

Zhongnong Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10729351
    Abstract: Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. An ST-T interval is identified from the plurality of subwaveforms and discontinuity points based on the comparison, the ST-T interval is divided into N number of equally spaced sections, and an average data value of detection is calculated for each section. A table is displayed that includes an average data value of detection for each section of the ST-T interval.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 4, 2020
    Inventors: Guangren Chen, Zhongnong Jiang
  • Patent number: 10092201
    Abstract: An ECG system measures and annotates the I-point of in an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. A discontinuity point is identified as the I-point of the ECG waveform from the comparison. The ECG waveform is displayed along with a marker at a location of the discontinuity point.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 9, 2018
    Inventors: Guangren Chen, Rong Yang, Zhongnong Jiang
  • Patent number: 10085663
    Abstract: An ECG system identifies and annotates cardiac electrophysiological signals in an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. At least one subwaveform or one or more discontinuity points are identified as a normal or abnormal electrophysiological signal of the ECG waveform from the comparison. The ECG waveform is displayed along with one or more markers at a location of the at least one subwaveform or one or more discontinuity points.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 2, 2018
    Inventors: Guangren Chen, Rong Yang, Zhongnong Jiang
  • Publication number: 20180235497
    Abstract: An ECG system measures and annotates the I-point of in an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. A discontinuity point is identified as the I-point of the ECG waveform from the comparison. The ECG waveform is displayed along with a marker at a location of the discontinuity point.
    Type: Application
    Filed: April 25, 2018
    Publication date: August 23, 2018
    Inventors: Guangren Chen, Rong Yang, Zhongnong Jiang
  • Publication number: 20180184931
    Abstract: An ECG system identifies and annotates cardiac electrophysiological signals in an ECG waveform from harmonic waveforms. Electrical impulses are received from a beating heart. The electrical impulses are converted to an ECG waveform. The ECG waveform is converted to a frequency domain waveform, which, in turn, is separated into two or more different frequency domain waveforms, which, in turn, are converted into a plurality of time domain cardiac electrophysiological subwaveforms and discontinuity points between these subwaveforms. The plurality of subwaveforms and discontinuity points are compared to a database of subwaveforms and discontinuity points for normal and abnormal patients. At least one subwaveform or one or more discontinuity points are identified as a normal or abnormal electrophysiological signal of the ECG waveform from the comparison. The ECG waveform is displayed along with one or more markers at a location of the at least one subwaveform or one or more discontinuity points.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 5, 2018
    Inventors: Guangren Chen, Rong Yang, Zhongnong Jiang
  • Patent number: 7664808
    Abstract: Systems and methods for determining coefficients of an Finite Impulse Response (FIR) filter are disclosed. The FIR filter coefficients are computed by determining a sine of an input value and an inverse of the input value. The sine of the input signal and the inverse of the input signal are multiplied together to form a sinc value of the input value. The sinc value is employed to determine the coefficient. The system and method can be repeated to compute any number of FIR filter coefficients in real-time. The sine of the input signal is computed utilizing a memory lookup table. The memory lookup table includes pairs of uniformly distributed values for the sine and cosine functions in the range of 0 to ?. The inverse of the input value is computed using an inverse memory lookup table, a most significant digit and a remainder. The coefficient is then computed from a product of the sine of the input signal and the inverse of the input signal.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: February 16, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Zhongnong Jiang, Rustin W. Allred
  • Patent number: 7406178
    Abstract: The present invention is a digital dynamic compression or automatic gain control (AGC) (10) adapted for use in high quality audio and hearing aids applications. An efficient digital AGC design employs two compact ROM-based tables (ROM_CSD, ROM_SPL) in addition to two comparators (COMP_A, COMP_B) and several registers (REG_A, REG_B, ADDR_A, ADDR_B). While one ROM stores the values of discrete input signal levels, the other contains gain codes based on a canonical signed digit (CSD) coding approach that leads to a very simple gain multiplier (20). In many cases an extremely compact table for gain values can be achieved by reusing a single small-size ROM that behaves like one that is several time larger. Two design examples are shown to expound the insights of the new digital AGC design. For the less-than-half-dB-gain-step cases only two adders are required for the multiplier whereas just three adders are needed in the situations with less than quarter-dB gain steps.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: July 29, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Zhongnong Jiang, James R. Hochschild
  • Patent number: 7292630
    Abstract: A multiplexed FIR/IIR digital filter structure (300) which offers linear phase response and low group delay by switching on a FIR filter portion (31) or a IIR filter portion (32). To reduce the silicon area, the FIR/IIR filter (300) shares registers which is enabled because the FIR and IIR processing do not use the registers at the same time but rather consecutively. Further, the multiplexed FIR/IIR digital filter structure (300) can offer limit-cycle-free IIR operation using two's-complement truncation in combination with positive valued allpass coefficients.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: November 6, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Zhongnong Jiang
  • Patent number: 7007052
    Abstract: Systems and methods for determining coefficients a filter are disclosed. The filter coefficients are computed by determining a sine of an input value and an inverse of the input value. The sine of the input signal and the inverse of the input signal are multiplied together to form a sinc value of the input value. The sinc value is employed to determine the coefficient. The system and method can be repeated to compute any number of filter coefficients in real-time. The sine of the input signal is computed utilizing a memory lookup table. The memory lookup table includes pairs of uniformly distnbuted values for the sine and cosine functions in the range of 0 to ?. The inverse of the input value is computed using an inverse memory lockup table, a most significant digit and a remainder. The coefficient is then computed from a product of the sine of the input signal and the inverse of the input signal. Thus, the coefficient is computable in real-time without the use of previously computed and stored coefficients.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: February 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Zhongnong Jiang, Rustin W. Allred
  • Publication number: 20050262177
    Abstract: Systems and methods for determining coefficients of an FIR filter are disclosed. The FIR filter coefficients are computed by determining a sine of an input value and an inverse of the input value. The sine of the input signal and the inverse of the input signal are multiplied together to form a sinc value of the input value. The sinc value is employed to determine the coefficient. The system and method can be repeated to compute any number of FIR filter coefficients in real-time. The sine of the input signal is computed utilizing a memory lookup table. The memory lookup table includes pairs of uniformly distributed values for the sine and cosine functions in the range of 0 to ?. The inverse of the input value is computed using an inverse memory lookup table, a most significant digit and a remainder. The coefficient is then computed from a product of the sine of the input signal and the inverse of the input signal.
    Type: Application
    Filed: June 23, 2005
    Publication date: November 24, 2005
    Inventors: Zhongnong Jiang, Rustin Allred
  • Patent number: 6834292
    Abstract: In a microprocessor, a method for providing a sample-rate conversion (“SRC”) filter on an input stream of sampled data provided at a first rate, to produce an output stream of data at a second rate different from the first rate. The input stream of sampled data is operated on with a first low-order interpolation filter routine to produce a first stream of intermediate data. The first stream of intermediate data is operated on with a first simplified interpolation filter routine, having a substantially small number of operations to calculate the coefficients thereof, to produce a second stream of intermediate data. The second stream of intermediate data is operated on with a first decimating filter routine to produce the output stream of data.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: December 21, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Zhongnong Jiang, Rustin W. Allred, James R. Hochschild
  • Publication number: 20040208241
    Abstract: A multiplexed FIR/IIR digital filter structure (300) which offers linear phase response and low group delay by switching on a FIR filter portion (31) or a IIR filter portion (32). To reduce the silicon area, the FIR/IIR filter (300) shares registers which is enabled because the FIR and IIR processing do not use the registers at the same time but rather consecutively. Further, the multiplexed FIR/IIR digital filter structure (300) can offer limit-cycle-free IIR operation using two's-complement truncation in combination with positive valued allpass coefficients.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Inventor: Zhongnong Jiang
  • Patent number: 6711599
    Abstract: A lattice-based second-order allpass filter (200) providing a digital filter, absent of limit cycles, includes interconnected quantizers(214, 224), delays (232, 240), multipliers (210, 220), and adders (208, 216, 228) for defining a transfer function, where the circuit corresponds in order and values to intrinsic values of the transfer function. The quantizers are connected in series after the multipliers to eliminate any double precision additions which give rise to the appearance of parasitic oscillations. The savings in hardware results from locating the quantizers after the multipliers; thus, eliminating all double precision additions that are mandatory in the classical second-order lattice structure. The second-order allpass filter coefficients that retain the limit-cycle-absent property of the filter correspond to specific guidelines.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: March 23, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Zhongnong Jiang
  • Publication number: 20030172098
    Abstract: In a microprocessor, a method for providing a sample-rate conversion (“SRC”) filter on an input stream of sampled data provided at a first rate, to produce an output stream of data at a second rate different from the first rate. The input stream of sampled data is operated on with a first low-order interpolation filter routine to produce a first stream of intermediate data. The first stream of intermediate data is operated on with a first simplified interpolation filter routine, having a substantially small number of operations to calculate the coefficients thereof, to produce a second stream of intermediate data. The second stream of intermediate data is operated on with a first decimating filter routine to produce the output stream of data.
    Type: Application
    Filed: August 15, 2002
    Publication date: September 11, 2003
    Inventors: Zhongnong Jiang, Rustin W. Allred, James R. Hochschild
  • Publication number: 20030154224
    Abstract: Systems and methods for determining coefficients of an FIR filter are disclosed. The FIR filter coefficients are computed by determining a sine of an input value and an inverse of the input value. The sine of the input signal and the inverse of the input signal are multiplied together to form a sinc value of the input value. The sinc value is employed to determine the coefficient. The system and method can be repeated to compute any number of FIR filter coefficients in real-time. The sine of the input signal is computed utilizing a memory lookup table. The memory lookup table includes pairs of uniformly distributed values for the sine and cosine functions in the range of 0 to &pgr;. The inverse of the input value is computed using an inverse memory lookup table, a most significant digit and a remainder. The coefficient is then computed from a product of the sine of the input signal and the inverse of the input signal.
    Type: Application
    Filed: October 30, 2001
    Publication date: August 14, 2003
    Inventors: Zhongnong Jiang, Rustin W. Allred
  • Patent number: 6546407
    Abstract: A method for providing a multi-stage filter on an input stream of digital data. In the method, the input stream of digital data is operated on with a first polyphase filter routine to produce a first stream of intermediate data. The first stream of intermediate data is operated on with a second polyphase filter routine. An optimizing indexing procedure is applied in performing instructions of the routines so as to execute fewer instructions that do not generate intermediate data on which the output stream of data is based.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: April 8, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Zhongnong Jiang, Rustin W. Allred, James R. Hochschild
  • Publication number: 20020181724
    Abstract: The present invention is a digital dynamic compression or automatic gain control (AGC) (10) adapted for use in high quality audio and hearing aids applications. An efficient digital AGC design employs two compact ROM-based tables (ROM_CSD, ROM_SPL) in addition to two comparators (COMP_A, COMP_B) and several registers (REG_A, REG_B, ADDR_A, ADDR_B). While one ROM stores the values of discrete input signal levels, the other contains gain codes based on a canonical signed digit (CSD) coding approach that leads to a very simple gain multiplier (20). In many cases an extremely compact table for gain values can be achieved by reusing a single small-size ROM that behaves like one that is several time larger. Two design examples are shown to expound the insights of the new digital AGC design. For the less-than-half-dB-gain-step cases only two adders are required for the multiplier whereas just three adders are needed in the situations with less than quarter-dB gain steps.
    Type: Application
    Filed: April 6, 2001
    Publication date: December 5, 2002
    Inventors: Zhongnong Jiang, James R. Hochschild
  • Patent number: 6487573
    Abstract: A method for providing a sample-rate conversion (“SRC”) filter on an input stream of sampled data provided at a first rate, to produce an output stream of data at a second rate different from the first rate. The input stream of sampled data is operated on with a first low-order interpolation filter routine to produce a first stream of intermediate data. The first stream of intermediate data is operated on with a first simplified interpolation filter routine, having a substantially small number of operations to calculate the coefficients thereof, to produce a second stream of intermediate data. The second stream of intermediate data is operated on with a first decimating filter routine to produce the output stream of data.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: November 26, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Zhongnong Jiang, Rustin W. Allred, James R. Hochschild
  • Publication number: 20020116427
    Abstract: A method for providing a sample-rate conversion (“SRC”) filter on an input stream of sampled data provided at a first rate, to produce an output stream of data at a second rate different from the first rate. The input stream of sampled data is operated on with a first low-order interpolation filter routine to produce a first stream of intermediate data. The first stream of intermediate data is operated on with a first simplified interpolation filter routine, having a substantially small number of operations to calculate the coefficients thereof, to produce a second stream of intermediate data. The second stream of intermediate data is operated on with a first decimating filter routine to produce the output stream of data.
    Type: Application
    Filed: January 16, 2002
    Publication date: August 22, 2002
    Inventors: Zhongnong Jiang, Rustin W. Allred, James R. Hochschild
  • Publication number: 20020052904
    Abstract: A lattice-based second-order allpass filter (200) providing a digital filter, absent of limit cycles, includes interconnected quantizers(214, 224), delays (232, 240), multipliers (210, 220), and adders (208, 216, 228) for defining a transfer function, where the circuit corresponds in order and values to intrinsic values of the transfer function. The quantizers are connected in series after the multipliers to eliminate any double precision additions which give rise to the appearance of parasitic oscillations. The savings in hardware results from locating the quantizers after the multipliers; thus, eliminating all double precision additions that are mandatory in the classical second-order lattice structure. The second-order allpass filter coefficients that retain the limit-cycle-absent property of the filter correspond to specific guidelines.
    Type: Application
    Filed: November 29, 2000
    Publication date: May 2, 2002
    Inventor: Zhongnong Jiang