Patents by Inventor Zimin Nie

Zimin Nie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10454124
    Abstract: Embodiments of an aqueous electrolyte comprising a base and a phenazine derivative are disclosed. Redox flow batteries including the aqueous electrolyte are also disclosed.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 22, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Xiaoliang Wei, Wei Wang, Aaron M. Hollas, Vincent L. Sprenkle, Zimin Nie, Bin Li
  • Patent number: 10381667
    Abstract: A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 13, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Edwin C. Thomsen, David M. Reed, Brian J. Koeppel, Kurtis P. Recknagle, Vilayanur V. Viswanathan, Alasdair J. Crawford, Zimin Nie, Wei Wang, Vincent L. Sprenkle, Bin Li
  • Publication number: 20180366757
    Abstract: Embodiments of an aqueous electrolyte comprising a base and a phenazine derivative are disclosed. Redox flow batteries including the aqueous electrolyte are also disclosed.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 20, 2018
    Inventors: Xiaoliang Wei, Wei Wang, Aaron M. Hollas, Vincent L. Sprenkle, Zimin Nie, Bin Li
  • Publication number: 20180342771
    Abstract: Disclosed are cathodes having electron-conductive high-surface-area materials, aqueous non-halide-containing electrolytes, secondary zinc-iodine energy storage devices using the same, and methods for assembling the same. The disclosed high-surface-area materials and the aqueous non-halide-containing electrolyte solutions can contribute together to the confinement of the active iodine species in the cathode and to the minimization of shuttle effects and self-discharging. The non-halide-containing electrolyte salts can facilitate preferential adsorption of the iodine species to the cathode material rather than dissolution in the aqueous electrolyte solution, thereby contributing to the confinement of the active iodine species.
    Type: Application
    Filed: October 3, 2017
    Publication date: November 29, 2018
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Bin Li, Huilin Pan, Zimin Nie, Jun Liu, Vincent L. Sprenkle
  • Patent number: 9960443
    Abstract: Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 1, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Wei Wang, Liyu Li, Zhenguo Yang, Zimin Nie
  • Patent number: 9929429
    Abstract: Composite materials containing sulfurized polymers and sulfur-containing particles can be used in lithium-sulfur energy storage devices as a positive electrode. The composite material exhibits relatively high capacity retention and high charge/discharge cycle stability. In one particular instance, the composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide intermediates formed during electrochemical charge-discharge processes of sulfur can be confined through chemical bonds and not mere physical confinement or sorption.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 27, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Jie Xiao, Gregory J. Exarhos, Birgit Schwenzer, Zimin Nie
  • Patent number: 9819039
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: November 14, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Patent number: 9793566
    Abstract: An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: October 17, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Tianbiao Liu, Bin Li, Xiaoliang Wei, Zimin Nie, Wei Wang, Jun Liu, Vincent L. Sprenkle
  • Publication number: 20170288243
    Abstract: A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 5, 2017
    Inventors: Edwin C. Thomsen, David M. Reed, Brian J. Koeppel, Kurtis P. Recknagle, Vilayanur V. Viswanathan, Alasdair J. Crawford, Zimin Nie, Wei Wang, Vincent L. Sprenkle, Bin Li
  • Patent number: 9748595
    Abstract: Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I?, anions of Ix (for x?3), or both in an aqueous solution, wherein the I? and the anions of Ix (for x?3) compose an active redox couple in a second half-cell.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 29, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Bin Li, Zimin Nie, Wei Wang, Jun Liu, Vincent L. Sprenkle
  • Publication number: 20160308233
    Abstract: An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Applicant: Battelle Memorial Institute
    Inventors: Tianbiao Liu, Bin Li, Xiaoliang Wei, Zimin Nie, Wei Wang, Jun Liu, Vincent L. Sprenkle
  • Publication number: 20160099480
    Abstract: All-vanadium sulfate redox flow battery systems have a catholyte and an anolyte comprising an aqueous supporting solution including chloride ions and phosphate ions. The aqueous supporting solution stabilizes and increases the solubility of vanadium species in the electrolyte, allowing an increased vanadium concentration over a desired operating temperature range. According to one example, the chloride ions are provided by MgCl2, and the phosphate ions are provided by (NH4)2HPO4.
    Type: Application
    Filed: October 5, 2015
    Publication date: April 7, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Zimin Nie, Wei Wang, Xiaoliang Wei, Bin Li, Jun Liu, Vincent L. Sprenkle
  • Patent number: 9236620
    Abstract: Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: January 12, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Bin Li, Xiaoliang Wei, Qingtao Luo, Zimin Nie, Wei Wang, Vincent L. Sprenkle
  • Publication number: 20150380757
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Application
    Filed: July 31, 2015
    Publication date: December 31, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Publication number: 20150349369
    Abstract: Nonaqueous redox flow batteries (RFBs) can utilize a metal and a cation of the metal (Mn+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. The RFBs can also utilize a second electrolyte having I-based species. The I-based species can be selected from the group consisting of I? anions, I2, anions of Ix (x?3), or combinations thereof. Two different ones of the I-based species compose a second redox active couple in the second half cell.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 3, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Bin Li, Xiaoliang Wei, Zimin Nie, Wei Wang, Jun Liu, Vincent L. Sprenkle
  • Patent number: 9123931
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: September 1, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Patent number: 9077011
    Abstract: Redox flow battery systems having a supporting solution that contains Cl? ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42? and Cl? ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl? ions or a mixture of SO42? and Cl? ions.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: July 7, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, Soowhan Kim, Zhenguo Yang, Wei Wang, Zimin Nie, Baowei Chen, Jianlu Zhang, Guanguang Xia
  • Publication number: 20150147673
    Abstract: Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I?, anions of Ix (for x?3), or both in an aqueous solution, wherein the I? and the anions of Ix (for x?3) compose an active redox couple in a second half-cell.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Bin Li, Zimin Nie, Wei Wang, Jun Liu, Vincent L. Sprenkle
  • Patent number: 9023529
    Abstract: A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Zhenguo Yang, Wei Wang, Daiwon Choi, Zimin Nie
  • Patent number: 9017867
    Abstract: Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 28, 2015
    Assignees: Battelle Memorial Institute, The Trustees of Princeton University
    Inventors: Jun Liu, Ilhan A. Aksay, Daiwon Choi, Rong Kou, Zimin Nie, Donghai Wang, Zhenguo Yang