OPTICAL INFORMATION STORAGE MEDIUM
An optical information storage medium includes a plurality of areas and at least one transition area. Each transition area is located between two adjacent areas. The transition area allows data to be smoothly reproduced from the optical information storage medium at a low error generation rate. Also, since the optical information storage medium provides standards for the transition area, it is compatible with existing optical information storage media.
Latest Samsung Electronics Patents:
This application is a continuation of U.S. patent application Ser. No. 10/766,889 filed Jan. 30, 2004, which claims the priority of Korean Patent Application No. 2003-6286, filed on Jan. 30, 2003, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a reproduction-only information storage medium, and more particularly, to an optical information storage medium including a transition area for transiting between two adjacent areas among the areas forming the storage medium.
2. Description of the Related Art
Optical information storage media, for example, optical disks, are widely used in optical pickup apparatuses for recording/reproducing information in a non-contact way. Optical disks are classified as compact disks (CDs) or digital versatile disks (DVDs) according to their information storage capacity. Examples of recordable optical disks are 650 MB CD-R, CD-RW, 4.7 GB DVD+RW, and the like. Furthermore, HD-DVDs having a recording capacity of 20 GB or greater are under development.
The compatibility of the above optical information storage media with one another increases user convenience. In consideration of the economical efficiency and the convenience of users, storage media have different standards for different types. Storage media that have no determined standards yet are undergoing standardization. To achieve this standardization, a storage medium must be developed that has a format that can guarantee compatibility and consistency with existing storage media.
A conventional reproduction-only optical disk includes a burst cutting area (BCA), a lead-in area, a user data area, and a lead-out area. The BCA stores information about the serial number of the optical disk, and the lead-in area stores disk-related information. Here, the serial number of the optical disk is recorded as a barcode.
The BCA, the lead-in area, the user data area, and the lead-out area are consecutively arranged with no transition areas between adjacent areas. However, when the BCA, the lead-in area, and the user data area have different pit patterns, consecutive data reproduction may not be properly performed because of the absence of transition areas.
SUMMARY OF THE INVENTIONThe present invention provides an optical information storage medium which includes a plurality of areas and a transition area between two adjacent areas so as to achieve smooth data reproduction.
According to an aspect of the present invention, there is provided a reproduction-only optical information storage medium including comprising: a plurality of areas; and at least one transition area. Each transition area is located between two adjacent areas.
Data may be recorded in the form of pits in the areas and the transition area.
A pit pattern of the transition area may be the same as a pit pattern of an area in front of the transition area or as a pit pattern of an area at rear of the transition area.
The transition area may be a mirror area.
Pits of the transition area may be formed in a straight pattern or a wobbling pattern.
A track pitch of pits in the transition area may be the same as track pitches of pits in the adjacent areas. Alternatively, the track pitch of pits in the transition area and the track pitches of pits in the adjacent area may be different. The track pitch of pits formed in the transition area may gradually increase or decrease from the track pitch of pits formed in the area preceding the transition area to the track pitch of pits formed in the area following the transition area.
According to another aspect of the present invention, there is provided a reproduction-only optical information storage medium comprising: a burst cutting area (BCA); a lead-in area; a user data area; a lead-out area; and a transition area located in at least one of an area between the BCA and the lead-in area, an area between the lead-in area and the user data area, and an area between the user data area and the lead-out area. The BCA, the lead-in area, the user data area, and the lead out area are formed of pits.
A first transition area may be included between the BCA and the lead-in area, and the BCA, the lead-in area, and the first transition area may each formed of pits in a straight pattern or a wobbling pattern.
A second transition area may be included between the lead-in area and the user data area, and the lead-in area, the user data area, and the second transition area may each formed of pits in a straight pattern or a wobbling pattern.
When pits for the first or second transition area may be formed in a wobbling pattern, the amplitude of a wobble may gradually decrease or increase.
According to still another aspect of the present invention, there is provided a reproduction-only optical information storage medium comprises: a burst cutting area (BCA); a lead-in area; a user data area; a lead-in area; and a transition area. At least one of the BCA, the lead-in area, the user data area, and the lead-out area is divided into a plurality of sub-areas. The transition area is located between two adjacent sub-areas.
According to yet another aspect of the present invention, there is provided a method of recording information on a reproduction-only optical information storage medium. The method includes: forming a burst cutting area (BCA); forming a lead-in area; forming a user data area; forming a lead-out area; and forming a transition area between at least one of the BCA and the lead-in area, the lead-in area and the user data area, and the user data area and the lead-out area.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
An optical information storage medium according to various embodiments of the present invention is reproduction-only, and the entire area thereof is formed of pits. The optical information storage medium according to various embodiments of the present invention is divided into a plurality of areas according to function. As shown in
The BCA 10 stores the serial number of an optical information storage medium, for example, an optical disk, or data identifying the BCA. The lead-in area 20 stores disk-related information, copy protection information, and the like. Examples of the disk-related information are information about the type of information storage medium, such as a recordable disk, a write-one disk, or a reproduction-only disk, information about the number of recording layers, information about a recording speed, information about the disk size, and the like.
Referring to
The BCA 10 stores data recorded in a first straight pit pattern. The lead-in area 20 stores data that may be recorded in a second straight pit pattern, which is different from the first straight pit pattern, or in a wobbling pit pattern. Alternatively, the BCA 10 stores data recorded in a first wobbling pit pattern, and the lead-in area 20 stores data that may be recorded in a second wobbling pit pattern, which is different from the first wobbling pit pattern, or in a straight pit pattern. A straight pit pattern denotes an arrangement of pits along a straight line, and a wobbling pit pattern denotes an arrangement of pits along a wavy line.
The first and second straight pit patterns and the first and second wobbling pit patterns may be classified as a single pattern, a specific pattern, or a random pattern. The single pattern denotes a pattern in which pits, each having an identical length (nT), are arranged at regular intervals. Here, n denotes a natural number, and T denotes the minimum length of a pit. For example, a straight single pit pattern denotes a pattern in which pits each having an identical length are arranged along a straight line. A wobbling single pit pattern denotes a pattern in which pits each having an identical length are arranged along a wavy line. The specific pattern denotes a repetition of a pattern of pits having different lengths. For example, a pattern of a 3T pit and a 6T pit repeats. A straight specific pit pattern denotes a repetition of a pattern of pits that have different lengths along a straight line. A wobbling specific pit pattern denotes a repetition of a pattern of pits with different lengths along a wavy line. The random pattern denotes a random arrangement of pits having different lengths. For example, a straight random pit pattern denotes a random arrangement of pits with different lengths along a straight line. A wobbling random pit pattern denotes a random arrangement of pits with different lengths along a wavy line.
Because the BCA 10 and the lead-in area 20 have different pit patterns, the first transition area 15 is included between the BCA 10 and the lead-in area 20 in order to prevent an improper consecutive reproduction of data. The first transition area 15 stores data identifying a transition area.
As shown in
As shown in
As shown in
Alternatively, the first transition area 15 may be formed of a wobbling single pattern of pits, a wobbling random pattern of pits, or a wobbling specific pattern of pits. In
Although
As described above, when pits are formed in the BCA 10 in a straight random pattern or in a wobbling random pattern, information containing a content, for example, 00h or BCA, is recordable in the BCA 10.
Although only the case where pits are formed in the BCA 10 in a straight pattern has been described above, the BCA 10 may be formed of a wobbling pattern of pits. For example, pits may be formed in the BCA 10 in a wobbling single pattern, in a wobbling specific pattern, or in a wobbling random pattern.
Pits may be formed in the BCA 10 in a straight pattern or a wobbling pattern and pits are formed in the lead-in area 20 in a wobbling pattern.
When pits are formed in the BCA 10, the first transition area 15, or the lead-in area 20 in a wobbling pattern, they are formed so that the amplitude of a wobble gradually increases or decreases. As shown in
The BCA 10, the first transition area 15, and the lead-in area 20 may have either an identical track pitch or different track pitches. For example, the BCA 10 and the first transition area 15 have the same track pitch, and only the lead-in area 20 has a different track pitch. Alternatively, the first transition area 15 and the lead-in area 20 may have the same track pitch, and only the BCA 10 has a different track pitch. When the BCA 10 and the lead-in area 20 have different track pitches, the first transition area 15 is formable so that its track pitch can gradually increase or decrease. For example, when a track pitch for the BCA 10 is “a” and a track pitch for the lead-in area 20 is “b” (b>a), the first transition area 15 is formed so that its track pitch can gradually increase from “a” to “b”.
An optical information storage medium according to a second embodiment of the present invention includes the BCA 10, the lead-in area 20, the user data area 30, and the lead-out area 40. A second transition area 25 is further included between the lead-in area 20 and the user data area 30.
Hereinafter, a pit pattern formed in each of the lead-in area 20, the second transition area 25, and the user data area 30 will be described with reference to
Each of the third and fourth straight patterns may be one of the straight single pattern, the straight specific pattern, and the straight random pattern.
When pits are formed in the second transition area 25 in a wobbling pattern, they are formable so that the amplitude of a wobble can gradually decrease as shown in
A pit pattern formed in the second transition area 25 when the lead-in area 25 is formed of a wobbling pattern of pits and the user data area 30 is formed of a straight pattern of pits will now be described. To be more specific, pits may be formed in the lead-in area 20 in a wobbling single pattern, a wobbling specific pattern, or a wobbling random pattern, and pits may be formed in the user data area 30 in a straight single pattern, a straight specific pattern, or a straight random pattern.
When pits are formed in the second transition area 25 in a wobbling pattern, they are formable so that the amplitude of a wobble can gradually decrease as shown in
Examples of a pit pattern formed in the second transition area 25 when the lead-in area 20 and the user data area 30 are formed of a straight pattern of pits and a wobbling pattern of pits, respectively, will now be described. To be more specific, pits may be formed in the lead-in area 20 in a straight single pattern, a straight specific pattern, or a straight random pattern, and pits may be formed in the user data area 30 in a wobbling single pattern, a wobbling specific pattern, or a wobbling random pattern.
When pits are formed in the second transition area 25 in a wobbling pattern, they are formable so that the amplitude of a wobble can gradually increase as shown in
When the lead-in area 20 and the user data area 30 are formed of pits to have a wobbling pattern, the second transition area 25 included therebetween is formable of a straight single pattern of pits, a straight specific pattern of pits, a straight random pattern of pits, a wobbling single pattern of pits, a wobbling specific pattern of pits, or a wobbling random pattern of pits. Alternatively, the second transition area 25 can be a mirror area.
When pits are formed in the lead-in area 20, the second transition area 25, or the user data area 30 in a wobbling pattern, they are formable so that the amplitude of a wobble gradually increases or decreases.
The lead-in area 20, the second transition area 25, and the user data area 30 may have either an identical track pitch or different track pitches. For example, the lead-in area 20 and the second transition area 25 have the same track pitch, and only the user data area 30 has a different track pitch. Alternatively, the second transition area 25 and the user data area 30 may have the same track pitch, and only the lead-in area 20 has a different track pitch. When the lead-in area 20 and the user data area 30 have different track pitches, the second transition area 25 is formable so that its track pitch can gradually increase or decrease. For example, when a track pitch for the lead-in area 20 is “c” and a track pitch for the user data area 30 is “d” (d>c), the second transition area 25 is formed so that its track pitch can gradually increase from “c” to “d”.
An optical information storage medium according to a third embodiment of the present invention is divided into a plurality of areas, at least one of which is divided into a plurality of sub-areas according to function. A third transition area is included between two adjacent sub-areas. Referring to
A transition area may be included both between the BCA 10 and the lead-in area 20 and between the lead-in area 20 and the user data area 30. The principle of the first and second transition areas of the first and second embodiments is equally applied to these transition areas.
A third transition area 27 is included between the first and second sub-areas 20a and 20b of the lead-in area 20. Hereinafter, a pit pattern formed in each of the first and second sub-areas 20a and 20b and the third transition area 27 will be described in greater detail. The first and second sub-areas 20a and 20b are formed of pits in a straight pattern and a wobbling pattern, respectively. The straight pattern may be a straight single pattern, a straight specific pattern, or a straight random pattern, and the wobbling pattern may be a wobbling single pattern, a wobbling specific pattern, or a wobbling random pattern.
The third transition area 27 formed between the first and second sub-areas 20a and 20b when the first and second sub-areas 20a and 20b are formed of pits to have a straight pattern and a wobbling pattern, respectively, will now be described.
When the first and second sub-areas 20a and 20b are formed of pits to have a wobbling pattern and a straight pattern, respectively, the third transition area 27 included therebetween may be formed of a straight single pattern of pits, a straight specific pattern of pits, a straight random pattern of pits, a wobbling single pattern of pits, a wobbling specific pattern of pits, or a wobbling random pattern of pits. Alternatively, the third transition area 27 may be a mirror area.
When the first and second sub-areas 20a and 20b are both formed of pits to have a straight pattern, the third transition area 27 included therebetween may be formed of a straight single pattern of pits, a straight specific pattern of pits, a straight random pattern of pits, a wobbling single pattern of pits, a wobbling specific pattern of pits, or a wobbling random pattern of pits. Alternatively, the third transition area 27 may be a mirror area.
When the first and second sub-areas 20a and 20b are both formed of pits to have a wobbling pattern, the third transition area 27 included therebetween may be formed of a straight single pattern of pits, a straight specific pattern of pits, a straight random pattern of pits, a wobbling single pattern of pits, a wobbling specific pattern of pits, or a wobbling random pattern of pits. Alternatively, the third transition area 27 may be a mirror area.
When pits are formed in the first and second sub-areas 20a and 20b and the third transition area 27 in a wobbling pattern, they may be formed so that the amplitude of a wobble gradually increases or decreases.
The case where only the lead-in area 20 is divided into two sub-areas has been described above. However, the BCA 10, the user data area 30, or the lead-out area 40 may also be divided into a plurality sub-areas. In these cases, a transition area may be formed between two adjacent sub-areas. For example, the BCA 10 includes first and second sub-areas 10a and 10b, respectively, and a transition area 17, as shown in
The first and second sub-areas 20a and 20b and the third transition area 27 may have either an identical track pitch or different track pitches. For example, the first sub-area 20a and the third transition area 27 have the same track pitch, and only the second sub-area 20b has a different track pitch. Alternatively, the third transition area 27 and the second sub-area 20b have the same track pitch, and only the first sub-area 20a has a different track pitch. When the first and second sub-areas 20a and 20b have different track pitches, the third transition area 27 may be formed so that its track pitch can gradually increase or decrease. For example, when a track pitch for the first sub-area 20a is “e” and a track pitch for the second sub-area 20b is “f” (f>e), the third transition area 27 is formed so that its track pitch can gradually increase from “e” to “f”.
As described above, an optical information storage medium according to the present invention includes a plurality of areas, and a transition area is included in at least one of boundary areas formed by the areas. For example, a transition area is included in at least one of an area between the BCA 10 and the lead-in area 20, an area between the lead-in area 20 and the user data area 30, and an area between the first and second sub-areas 20a and 20b. A pit pattern formed in the transition area may be the same as that formed in the area that is in front of or at rear of the transition area. The area in front of the transition area denotes an area that is closer to the center of the storage medium than the transition area. The area at rear of the transition area denotes an area that is more outside than the transition area in the radial direction of the storage medium.
The optical information storage medium according to the present invention may be constituted with a single layer or a plurality of layers.
As described above, the optical information storage medium according to the present invention is divided into a plurality of areas according to function or purpose, and a transition area is included between two adjacent areas. Thus, data is smoothly reproduced at a low error generation rate. Also, since the optical information storage medium according to the present invention provides standards for the transition area, it is compatible with existing optical information storage media.
Although a few embodiments of the present invention have been shown and described, the present invention is not limited to the disclosed embodiments. Rather, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and their equivalents.
Claims
1. An optical information storage medium comprising:
- a burst cutting area (BCA);
- a lead-in area;
- a user data area;
- a lead-out area; and
- a transition area,
- wherein at least one of the BCA, the lead-in area, the user data area, and the lead-out area is divided into a plurality of sub-areas, the plurality of sub-areas comprising a first sub-area having a first track pitch and a second sub-area having a second track pitch different from the first track pitch, and
- the transition area is located between the first sub-area and the second sub-area.
2. An apparatus to reproduce information stored in an optical information storage medium having a burst cutting area (BCA), a lead-in area, a user data area, a lead-out area, and a transition area, the apparatus comprising:
- an optical pickup to emit light to the optical information storage medium; and
- a control unit to control the optical pickup to read the information stored in the user data area,
- wherein at least one of the BCA, the lead-in area, the user data area, and the lead-out area is divided into a plurality of sub-areas, the plurality of sub-areas comprising a first sub-area having a first track pitch and a second sub-area having a second track pitch different from the first track pitch, and
- the transition area is located between the first sub-area and the second sub-area.
Type: Application
Filed: Apr 3, 2008
Publication Date: Aug 7, 2008
Applicant: Samsung Electronics Co., Ltd. (Suwon-si)
Inventor: Kyung-geun Lee (Gyeonggi-do)
Application Number: 12/061,759
International Classification: G11B 5/58 (20060101);