INTEGRATED CIRCUIT WITH EMBEDDED RFID
An integrated circuit (IC) die includes a high capacitance solid state circuit region configured to perform predetermined operations and an RFID block configured for wireless communication with an external source. The RFID block is configured to record results from a plurality of stages of a manufacturing process. The RFID block is further configured to generate an internal BIST command in response to an external command wirelessly received by the RFID. The integrated circuit die also includes a built-in self-test (BIST) block coupled to carry out testing of the high capacitance solid state circuit region in response to the internal BIST command. The RFID block is configured to be capable of storing store information relating to the testing. The RFID block is further configured to enable wireless retrieval of the test results from the testing of the high capacitance solid state circuit region.
Latest Hynix Semiconductor Inc. Patents:
This application is a divisional application of U.S. patent application Ser. No. 11/468,685, filed Aug. 30, 2006, which claims the benefit of U.S. Provisional Patent Application No. 60/713,828, filed Sep. 2, 2005, the disclosures of both of which are incorporated by reference in its entirety for all purposes.
BACKGROUND OF THE INVENTIONThe continuous market pressures to produce integrated circuits (ICs), such as memory ICs and CPUs, more cost-effectively necessitates a rapid and cost-effective way to systematically manage testing of ICs and the corresponding test results at various stages of the manufacturing process such as testing at wafer level, quality assurance (QA), and at package level, as well as maintaining inventory information at various stages. For example, if information on the test results at the wafer level is recorded for each integrated circuit and is readily accessible, efficiency at subsequent stages will be enhanced. Similarly, recordation of the test results at the next stage in turn accelerates the efficiency at subsequent stages. Thus, the general work efficiency can be greatly improved by recording the operation results at each intermediate stage and continuously updating the information at each stage.
Also, the ability to retrieve the test results as well as tracking information (e.g., fab location, manufacturing technology, year of manufacturing, wafer lot, wafer number, location of the IC on the wafer, packaging plant, type of package) recorded in each IC can be highly beneficial in aiding yield improvement efforts. Further, manufacturing semiconductor chips as value-added products has been a recent trend and, this trend will be more pronounced in the future.
Hence, there is a need for efficient and cost-effective management of information at various stages of IC manufacturing and production and beyond.
BRIEF SUMMARY OF THE INVENTIONIn accordance with an embodiment of the invention, an integrated circuit (IC) includes a high capacitance solid state circuit region configured to perform predetermined operations, an RFID block comprising a FeRAM block for storing data, and an interface unit configured to transfer to the RFID block an externally-provided unique ID for wirelessly identifying the IC, the unique ID being stored in the FeRAM block. The IC further includes a conductive trace extending through predetermined regions of the IC, the conductive trace being configured as an antenna for the RFID block, wherein the RFID block is configured to receive and transmit information to an external source via the antenna.
In one embodiment, the high capacitance solid state circuit region comprises one or more of DRAM, Flash memory, FeRAM, CPU, system on chip (SoC), and ASIC.
In another embodiment, the conductive trace extends along the periphery of the IC.
In another embodiment, the RFID block includes an analog block having a demodulator circuit configured to demodulate RF signals received via the antenna and generate command signals corresponding to the received RF signals. The RFID block further includes a digital block configured to receive the command signals from the demodulator block and in response generate address and control signals coupled to the FeRAM block.
In another embodiment, the FeRAM block is configured to receive the address and command signals from the digital block and in response provide data previously stored in the FeRAM, the provided data corresponding to the RF signals received via the antenna. The analog block further includes a modulator circuit configured to modulate the data provided by the FeRAM block and generate signals to be transmitted to the external source via the antenna.
In another embodiment, the FeRAM block is configured to receive the address and command signals from the digital block and in response provide data previously stored in the FeRAM, the provided data corresponding to the RF signals received via the antenna. The analog block further includes a modulator circuit configured to modulate the data provided by the FeRAM block and generate signals to be transmitted to the external source via the antenna.
In another embodiment, the RFID block includes an analog block having a demodulator circuit configured to demodulate RF signals received via the antenna and generate command signals corresponding to the received RF signals. The RFID further includes a digital block configured to receive the command signals from the demodulator block and in response generate address, data and control signals coupled to the FeRAM block.
In another embodiment, the FeRAM block is configured to receive the address, data and command signals from the digital block and in response store the received data in memory locations corresponding to the received address.
In another embodiment, the RFID block further includes a voltage multiplier circuit configured to convert RF signals received via the antenna to a supply voltage for powering the RFID block.
In another embodiment, the RFID block further includes a power on reset circuit configured to detect the supply voltage and power up the RFID block when the supply voltage reaches a predetermined level.
In another embodiment, the FeRAM block includes a control circuit configured to receive control signals and to determine whether the control signals correspond to a read operation or a write operation, a memory array comprising a plurality of FeRAM cells arranged along rows and columns, a decoder coupled to the memory array and configured to select FeRAM cells in response to address signals received by the FeRAM block, sense amplifiers coupled to the memory array and configured to sense data stored in the selected FeRAM cells in a read operation, and I/O buffers configured to transfer data received by the FeRAM unit to the memory array in a write operation and to output the sensed data in a read operation.
In another embodiment, FeRAM cells along each column are connected to a bitline, and each FeRAM cell comprises a transistor and a FeRAM capacitor serially connected between a bitline and a plate line PL, the transistors in FeRAM cells along a row having their gates coupled to a wordline.
In another embodiment, the IC of further includes a built-in self-test (BIST) block configured to carry out testing of the IC when prompted to do so, and a BIST interface unit coupled between the RFID block and the BIST unit. The BIST interface unit is configured to supply commands generated by the RFID block to the BIST block, and to transfer test results from a BIST operation to the RFID block.
In accordance with another embodiment of the invention, a method for wireless exchange of information with IC dies each of which includes a RFID block and an antenna to enable wireless communication with the IC die, is as follows. A unique identification code is stored in each of the IC dies. Each IC die is tested, and at least part of the test results is stored in the corresponding IC die. The unique identification code stored in each IC die together with the RFID block and the antenna of each IC die enable wireless retrieval of the test results stored in each IC die.
In one embodiment, the unique identification code stored in each IC die together with the RFID block and the antenna of each IC die enable wireless retrieval of the test results from each IC die after each IC die is packaged.
In another embodiment, the unique identification code stored in each IC die together with the RFID block and the antenna of each IC die enable wireless retrieval of the test results from each IC die before each IC die is packaged.
In another embodiment, the testing of the IC dies is carried when the IC dies are on a semiconductor wafer so that the test results correspond to wafer test.
In another embodiment, the testing of the IC dies is carried after the IC dies are packaged so that the test results correspond to package test.
In another embodiment, using the unique identification code for each IC die, the test results stored in each IC die are wirelessly retrieved.
In another embodiment, using the unique identification code for each IC die, the test results are wirelessly stored in corresponding IC dies.
In another embodiment, each IC die includes an interface unit coupled to the RFID block, wherein the test results are stored in the RFID block of corresponding IC dies via their respective interface unit.
In another embodiment, each IC die comprises an interface unit coupled to the RFID block, wherein each unique identification code is stored in the RFID block of the corresponding IC die via the interface unit.
In another embodiment, the test results correspond to one or more of wafer test results, quality assurance test results, and package test results.
In another embodiment, tracking information is stored in each IC die, the tracking information identifying one or more of: manufacturing plant in which the IC die is manufactured, process technology used to manufacture the IC die, wafer lot to which the IC die belongs, the location of the IC die on a wafer from which the IC die is extracted, type of package in which the IC die is housed, packaging plant in which the IC die is packaged. The unique identification code stored in each IC die together with the RFID block and the antenna of each IC die enables wireless retrieval of the tracking information stored in each IC die.
In accordance with another embodiment of the invention, a method for increasing use efficiency of packaged IC dies each of which includes a RFID block and an antenna to enable wireless communication with the IC die, is as follows. Prior to packaging the IC dies, a unique identification code is stored in each of the IC dies, wherein the unique identification code stored in each IC die together with the RFID block and the antenna of each IC die enable wireless disabling of a defective portion of a packaged IC die so that a remaining functional portion of the packaged IC die can be used.
In another embodiment, using the unique identification code for each IC die, only the defective portion of the packaged IC die is wirelessly disabled so that a remaining functional portion of the packaged IC die can be used.
In another embodiment, using the unique identification code for each IC die, the defective portion of the packaged IC die is wirelessly identified.
In another embodiment, each IC die comprises an interface unit and a RFID block coupled to one another, wherein each unique identification code is stored in the RFID block of the corresponding IC die via the IC die's interface unit.
A further understanding of the nature and the advantages of the invention disclosed herein may be realized by reference to the remaining portions of the specification and the attached drawings.
In accordance with an embodiment of the invention, a solid state semiconductor IC includes a high capacitance circuitry portion configured to perform one or more functions such as those performed by conventional DRAMs, Flash memories, SRAMs, ASICs, FPGAs, analog ICs, data processors (e.g., CPUs or graphics processors), and system on chip (SoC). The solid state IC further includes a RFID block, an interface unit configured to provide wired access to the RFID block, and an embedded antenna configured to provide wireless access to the RFID block. The RFID block is configured to store information using ferroelectric memory technology (FeRAM). The interface unit is used when data is directly transferred to or from the RFID block via IC pins. In one embodiment, a metal layer routed along the peripheral region of the IC serves as the embedded RF antenna for wireless communications.
During the manufacturing process, the RFID block in each IC die on a wafer can be used to record a variety of information such as the results of tests performed on the die itself, statistical or yield information about the wafer and the wafer lot to which the particular die belongs. This helps improve efficiency of subsequent processes. Similarly, the results of operations carried out after the wafer level test (such as in QA or package testing) can be recorded in the RFID block, thus further enhancing efficiency in subsequent processes. In this manner, each IC carries a record of the results from various stages of the manufacturing process which can be easily accessed, thus significantly improving the work efficiency.
In
In step 806, information relating to any subsequent tests which each die undergoes, such as the measured speed and power, results from temperature testing, and the like can be stored in the FeRAM of the RFID block via wireless communication through the RF capability of the RFID block or wired communication through the tester and the interface unit. The data stored in the RFID block may also be retrieved wirelessly using well known techniques at any time. Even after the packaged IC's leave the manufacturing site, information can be exchanged with each IC provided that the proper equipment for wireless communication is available.
Digital block 908 includes logic circuit and is in communication with analog block 906 via VDD, power on reset (POR), clock signal CLK, Response, and Command signals. Digital block 908 is in turn in communication with FeRAM 910 via address signals ADD(×5), I/O(×8) bus, control signals CTR(×3), and clock signal CLK. Analog block 906, digital block 908, and FeRAM 910 operate such that when a valid externally generated command signal is detected by RFID block 902, depending on the command, either information is retrieved from FeRAM 910 and then transmitted to an external source or information transmitted by an external source is stored in FeRAM 910.
Cell 1106 will be used to describe write and read operations. In a write operation, wordline WL0 is raised high and if bitline BL is biased to a high voltage and plate line PL0 is biased to a low voltage (e.g., ground potential), then the cell capacitor is biased in logic 1 state. With wordline WL0 raised high, if bitline BL is biased to a low voltage (e.g., ground potential) and plate line PL0 is biased to a high voltage, then the cell capacitor is biased in logic 0 state. In a read operation, wordline WL0 is raised high, and if cell 1106 is biased in logic 1 state then a higher potential is developed on bitline BL, and if cell 1106 is biased in logic 0 state then a lower potential is developed on bitline BL. Once sufficient signal is developed on the bitlines, sense amplifier 1104 amplifies the developed signals to supply rails. Note that while memory array 1102 shows two-cells per bit configuration, one-cell per bit may be implanted using known techniques such as a reference voltage. Given the destructive nature of read 1 operation, a restore operation is carried out which is similar to the write operation described above.
In operation, command signals for initiating the BIST operation may be provided to RFID 1304 via RF signals or through the solid state semiconductor area 1302 and interface unit 1306. RFID block 1304 in turn generates control signals for initiating the BIST operation, and provides these control signals to BIST block 1312 via interface unit 1310. Upon completion of the BIST operation, part or all of the test results may be wirelessly retrieved by the manufacturer or the end-user via RFID block 1304. Also, all or part of the test results (e.g., key test results) may be stored in the FeRAM in the RFID 1304. Note that the implementation the BIST block 1312 depends on what function the IC 1300 performs, and as such BIST block 1312 needs to be tailored to the particular function IC 1300 performs. For example, if IC 1300 is a flash memory or a DRAM or a CPU, an appropriate one of a number of know BIST techniques can be implemented in block 1312 and appropriately interfaced with the main circuitry in region 1302.
Thus, in accordance with the present invention, a FeRAM-based RFID along with its RF antenna are embedded in various types of ICs used in electronic equipment such as computers, hand held devices, automobiles, appliances, and the like. The RFID embedded in ICs may be used for a variety of purposes including during the manufacturing process as described above. In one embodiment, the unique identification code stored in the RFID of each IC is used to track each IC for purposes of, for example, inventory assessment or distribution of ICs at a distribution center. By placing a reader at the distribution center, the flow of the ICs can be tracked. Additionally, electronic manufacturers, such as PC board or computer manufacturers, can place a reader on each PC board or inside the housing of an electronic equipment to enable communication with the RFID of each IC.
In another embodiment, the RFID feature is configured to significantly improve the use efficiency of each IC. For example, in a memory IC such as a DRAM chip, in case of chip failure, the manufacturer or even the end user can use the RFID feature on the IC to identify the bad bits, e.g., by using the BIST feature, and disable the portion of the array in which the bad bits reside, thus allowing the remainder of the DRAM to be used for storage. In another embodiment, the RFID feature is configured to store information about the reliability of the part, thus allowing substantial improvement in quality control. ICs with less robust characteristics can be marked as such in their respective RFID block, and a user can retrieve this information and in turn use the IC in products which are not expected to be durable (e.g., in disposable cameras).
In accordance with yet another embodiment, the RFID embedded in ICs is configured to provide accessibility in the field. For example, when an IC at the user's site fails, the RFID feature can be used to identify the failing IC and the information forwarded to the manufacturer. The manufacturer can then pull up the information on the particular IC and use such information for yield improvement and the like. In yet another embodiment, the RFID embedded in each IC is configured to prevent theft of the IC in much the same way tags are used to prevent theft of clothing items from clothing stores. In other embodiment, BIST functionality is advantageously integrated with the RFID feature in an IC to enable testing of ICs even after the packaged IC leaves the manufacturing site.
While the above provides a detailed description of various embodiments of the invention, many alternatives, modifications, and equivalents are possible. For this and other reasons, therefore, the above description should not be taken as limiting the scope of the invention as defined by the claims.
Claims
1. An integrated circuit (IC) die comprising:
- a high capacitance solid state circuit region configured to perform predetermined operations;
- an RFID block configured for wireless communication with an external source, the RFID block being configured to record results from a plurality of stages of a manufacturing process, the RFID block being further configured to generate an internal BIST command in response to an external command wirelessly received by the RFID; and
- a built-in self-test (BIST) block coupled to carry out testing of the high capacitance solid state circuit region in response to the internal BIST command,
- wherein the RFID block is configured to store information relating to the testing,
- wherein the RFID block is further configured to enable wireless retrieval of the test results from the testing of the high capacitance solid state circuit region.
2. The IC die of claim 1 wherein the results from the plurality of stages of the manufacturing process include results from die testing, QA testing, and package testing.
3. The IC die of claim 1 further comprising a BIST interface unit coupled between the RFID block and the BIST block, the BIST interface unit being configured to transmit the internal BIST command from the RFID block to the BIST block.
4. The IC die of claim 1 wherein the RFID block comprises an FeRAM block.
5. The IC die of claim 1 further comprising an interface unit configured to allow data transfer to or from the RFID block via IC pins.
6. An integrated circuit (IC) die comprising:
- a high capacitance solid state circuit region configured to perform predetermined operations;
- an RFID block configured for wireless communication with an external source, the RFID block being configured to record results from a plurality of stages of a manufacturing process,
- wherein the RFID block is further configured to enable wireless retrieval of the results from the manufacturing process.
7. The IC die of claim 6 wherein the results from the plurality of stages of the manufacturing process include results from die testing, QA testing, and package testing.
8. The IC die of claim 6 wherein the high capacitance solid state circuit region comprises one or more of DRAM, Flash memory, FeRAM, CPU, system on chip (SoC), and ASIC.
9. The IC die of claim 6 further comprising a conductive trace extending through predetermined regions of the IC die, the conductive trace being configured as an antenna for the RFID block, wherein the RFID block is configured to receive and transmit information to an external source via the antenna.
10. The IC die of claim 6 wherein the RFID block comprises an FeRAM block.
11. The IC die of claim 6 further comprising an interface unit configured to allow data transfer to or from the RFID block via IC pins.
Type: Application
Filed: Jan 11, 2011
Publication Date: May 19, 2011
Applicant: Hynix Semiconductor Inc. (Kyungki-do)
Inventors: HEE-BOK KANG (Chungcheongbuk-do), Jin-Hong Ahn (Kyoungki-do)
Application Number: 13/004,774