System with a reservoir for perfusion management
A system for perfusion management that monitors, maintains, diagnoses, or treats perfusion deficiencies.
The present application is related to, claims the earliest available effective filing date(s) from (e.g., claims earliest available priority dates for other than provisional patent applications; claims benefits under 35 USC §119(e) for provisional patent applications), and incorporates by reference in its entirety all subject matter of the following listed applications; the present application also claims the earliest available effective filing date(s) from, and also incorporates by reference in its entirety all subject matter of any and all parent, grandparent, great-grandparent, etc. applications of the following listed applications:
1. United States patent application entitled A SYSTEM FOR PERFUSION MANAGEMENT, naming Lowell L. Wood Jr. as inventor, filed substantially contemporaneously and commonly assigned herewith.
2. United States patent application entitled A SYSTEM WITH A SENSOR FOR PERFUSION MANAGEMENT, naming Lowell L. Wood Jr. as inventor, filed substantially contemporaneously and commonly assigned herewith.
3. United States patent application entitled A TELESCOPING PERFUSION MANAGEMENT SYSTEM, naming Lowell L. Wood, Jr. as inventor, filed substantially contemporaneously and commonly assigned herewith.
The present application relates, in general, to detection and/or treatment.
SUMMARYIn one aspect, a system includes but is not limited to: a body portion; at least one extensible finger coupled to said body portion; at least one reservoir in communication with said extensible finger; and a control circuitry coupled to said extensible finger, or said body portion. In addition to the foregoing, other system aspects are described in the claims, drawings, and text forming a part of the present application.
In one aspect, a method includes but is not limited to: fabricating a device by forming a cavity for storing a receivable; coupling a flexible conduit to said cavity, the conduit being configured to extend from said cavity to a target location in an animal's body; and coupling said flexible conduit and said cavity to a monitoring system, said monitoring system including logic or software configured for directing said receivable from said cavity to said target location. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
In another aspect, a method includes but is not limited to: storing a receivable in an implanted storage medium; extending a flexible conduit between said storage medium and a target location; and transmitting said receivable from said storage medium to said target location. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present application.
In one or more various aspects, related systems include but are not limited to circuitry and/or programming for effecting the herein-referenced method aspects; the circuitry and/or programming can be virtually any combination of hardware, software, and/or firmware configured to effect the herein-referenced method aspects depending upon the design choices of the system designer.
In addition to the foregoing, various other method and or system aspects are set forth and described in the text (e.g., claims and/or detailed description) and/or drawings of the present application.
The foregoing is a summary and thus contains, by necessity; simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices and/or processes described herein, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth herein.
The use of the same symbols in different drawings typically indicates similar or identical items.
DETAILED DESCRIPTIONThe present application uses formal outline headings for clarity of presentation. However, it is to be understood that the outline headings are for presentation purposes, and that different types of subject matter may be discussed throughout the application (e.g., device(s)/structure(s) may be described under the process(es)/operations heading(s) and/or process(es)/operations may be discussed under structure(s)/process(es) headings). Hence, the use of the formal outline headings is not intended to be in any way limiting.
1. Perfusion Management Device(s) and/or Process(es).
With reference now to
A. Structure(s) and or Device(s)
With reference to the figures, and with reference now to
Referring now to
Continuing to refer to
In one aspect one or more fluids are delivered to one or more of selected locations by the device for perfusion management 100. The selected location may be, for example, in proximity to or within a tumor, a circulatory system, an aorta, a vena cava, a site of therapy, or a site of investigation in an animal.
Continuing to refer to
With reference now to
Continuing to refer to
Continuing to refer to
Continuing to refer to
With reference now to
Continuing to refer to
Continuing to refer to
With reference now to
It will also be appreciated by those having skill in the art that the device for perfusion management 100 and its components, such as, for example, the extensible finger 104, the plurality of telescoping segments 304, or one or more operative tools 324, has a size, dimension, shape, material, and properties of flexion, retraction, and extension to allow for the steering, guiding, or positioning of the components of the device for perfusion management 100. For example, the extensible finger 104 may need to be steered around an occlusion or a fork in the vasculature. In this example, the extensible finger 104 may need to retracted, repositioned and then extended in a new direction. Extending, retracting or repositioning of the extensible finger 104 may be accomplished by techniques known in the art, for example, by using a guide wire or a by employing a shape polymer. In another aspect, the extensible finger may be retracted and then “punched through” an occlusion to dislodge it. In this example, lasers, shears, or a drug may be employed to degrade the occlusion. In this example, subsequent to the dislodgement and degradation of the occlusion, the siphon 326 or an evacuation device is employed to evacuate any debris, before the extensible finger 104 continues traveling the circulatory system. It will also be appreciated by those skilled in the art that the device for perfusion management 100 is not restricted to traveling the circulatory system but may be implanted in any tissue, such as, for example, nerve, epithelial, dermal, sub-dermal, connective, or muscle tissue. Additionally, the device for perfusion management 100 may be implanted in inter-tissue spaces, or inter-organ spaces, for example, those found within a body cavity.
In one aspect the device for perfusion management 100 includes an array of sensors 116 positioned across the plurality of telescoping segments 304 for monitoring, tracking, or mapping a gradient of temperature, pressure, flow, or material concentration in one or more locations. The one or more location may be, for example, a tissue, an artery, or a vein. In another aspect the device for perfusion management 100 has an auto-correct feature for correcting a sub-normal or abnormal gradient of temperature, pressure, flow concentration, or material concentration
The device for perfusion management 100 may be composed of materials known in the art, for example, a metal, a ceramic, a glass, a plastic, a polymer, a biologically compatible material, or a combination. For example, the device for perfusion management 100 may be made of helically-coiled stainless steel wire and coated with a polymer, such as, Teflon™. In another example, the device for perfusion management 100 may be made of helically-coiled stainless steel wire and coated with a polymer and impregnated with one or more of a biological material, for example, including but not limited to, anti coagulants, or inhibitors.
B. Operation(s) and/or Process(es)
Those having skill in the art will appreciate that some or all of the components of the device for perfusion management 100 may be present ex-vivo. In one implementation, the device for perfusion management 100 is placed in proximity to the location on the animal, for example, the human body 501, and the extensible finger 104 directed to the selected location and an effective agent delivered in proximity to the selected location. The extensible finger 104 may be retracted after such a delivery, leaving the device for perfusion management 100 in place at the location, until time for a future delivery of the effective agent or another operation. In this implementation, the majority of the device for perfusion management 100 is ex vivo while the extensible finger 104 alternates between ex vivo and in vivo states.
In another aspect, some or all the components of the device for perfusion management 100 are present in vivo. In one implementation, the device for perfusion management 100 is placed in proximity to the location within the animal, for example, the human body 501, and the extensible finger 104 directed to a selected location and an effective agent delivered in proximity to the selected location. The extensible finger 104 may be retracted after such a delivery, leaving the device for perfusion management 100 in place at the location, until time for a future delivery or another operation. In this implementation, the majority of the device for perfusion management 100 is in-vivo while the extensible finger 104 alternates between retracted, partially retracted or unretracted states.
In one implementation, the device for perfusion management 100 is operable by a person. The person monitors, guides, positions, and performs other actions/operations or manages a response consistent with the device for perfusion management 100 being managed by the person. In such an implementation a separate display device can present imagery to aid the person. The imagery may be captured as described above with reference to
C. Variation(s), and/or Implementation(s)
Those having skill in the art will recognize that the present application teaches modifications of the devices, structures, and/or processes within the spirit of the teaching herein. For example, the device for perfusion management 100 need not be limited to managing perfusion. The device provides a mechanism for exploring one or more regions and/or reaching a location within an animal, obtaining information, communicating this information, performing operations, performing procedures, and providing treatment. In another example, the device for perfusion management 100 may find utility in the management of physiological functions, the detection or elimination of pathological functions or conditions, and/or treatment of diseases of non-human animals. Other modifications of the subject matter herein will be appreciated by one of skill in the art in light of the teachings herein.
The foregoing described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.
While particular aspects of the present subject matter described herein have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this subject matter described herein. Furthermore, it is to be understood that the invention is defined solely by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations), etc.
Claims
1-65. (canceled)
66. A method for fabricating a perfusion management device comprising:
- associating one or more conduits with one or more receiving units for sourcing one or more receivables; and
- associating at least one sensor with one or more portholes of the one or more conduits.
67-105. (canceled)
106. A system for fabricating a perfusion management device comprising:
- circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables; and
- circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits.
107. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more flexible conduits with one or more receiving units for sourcing one or more receivables.
108. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more extensible and/or retractable conduits with one or more receiving units for sourcing one or more receivables.
109. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more telescopically extensible and/or retractable conduits with one or more receiving units for sourcing one or more receivables.
110. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more guidable and/or movable conduits with one or more receiving units for sourcing one or more receivables.
111. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more programmably controllable, guidable and/or positionable conduits with one or more receiving units for sourcing one or more receivables.
112. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more wirelessly controllable, guidable and/or positionable conduits with one or more receiving units for sourcing one or more receivables.
113. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more articulatable conduits with one or more receiving units for sourcing one or more receivables.
114. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more pliable ducts with one or more receiving units for sourcing one or more receivables.
115. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits composed of a plurality of segments with one or more receiving units for sourcing one or more receivables.
116. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits including one or more stent portions with one or more receiving units for sourcing one or more receivables.
117. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more diameter varying conduits with one or more receiving units for sourcing one or more receivables.
118. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating two or more conduits with one or more receiving units for sourcing one or more receivables.
119. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits with one or more storage cavities for sourcing one or more receivables.
120. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing two or more receivables.
121. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits with two or more receiving units for sourcing one or more receivables.
122. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more fluid receivables.
123. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits with one or more mixing receiving units for sourcing one or more receivables.
124. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating one or more conduits with one or more receiving units for sourcing one or more receivables comprises:
- circuitry programmed to operate one or more actuators for associating one or more conduits with one or more remote receiving units for sourcing one or more receivables.
125. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating an array of sensors with one or more portholes of the one or more conduits.
126. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating an array of sensors with two or more portholes disposed along a length of the one or more conduits.
127. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating at least one sensor with one or more removably covered portholes of the one or more conduits.
128. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating at least one imager with one or more portholes of the one or more conduits.
129. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating two or more different sensors with one or more portholes of the one or more conduits.
130. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating at least one sensor for mapping one or more variable gradients with one or more portholes of the one or more conduits.
131. The system of claim 106, wherein the circuitry programmed to operate one or more actuators for associating at least one sensor with one or more portholes of the one or more conduits comprises:
- circuitry programmed to operate one or more actuators for associating at least one sensor with one or more sealed portholes of the one or more conduits.
132. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more monitoring and/or control units with the device.
133. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more sources of at least one of the one or more receivables with at least one of the one or more receiving units.
134. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating at least one of the one or more receivables with at least one of the one or more receiving units.
135. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more receivers and/or transmitters with the device.
136. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more antennae with the device.
137. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more operative tools with the device.
138. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more pumps with the device.
139. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more body portions with the device.
140. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more actuators with the device.
141. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more dispensers with the device for controlling delivery of at least one of the one or more receivables.
142. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more chargeable polymers with the device.
143. The system of claim 106, further comprising:
- circuitry programmed to operate one or more actuators for associating one or more sources of electric charge and/or radiation with the device.
144. The system of claim 106, wherein the device is implantable.
145. The system of claim 106, wherein the device is positionable in vivo.
146. Non-transitory computer readable media bearing computer executable instructions for facilitating operations comprising:
- associating one or more conduits with one or more receiving units for sourcing one or more receivables; and
- associating at least one sensor with one or more portholes of the one or more conduits.
147. A system for fabricating a perfusion management device comprising:
- means for associating one or more conduits with one or more receiving units for sourcing one or more receivables; and
- means for associating at least one sensor with one or more portholes of the one or more conduits.
Type: Application
Filed: Jan 11, 2011
Publication Date: Nov 17, 2011
Inventor: Lowell L. Wood, JR. (Bellevue, WA)
Application Number: 12/930,648
International Classification: G06F 19/00 (20110101); B23P 17/04 (20060101);