GROWN NANOFIN TRANSISTORS
One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment, a fin of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy (SPE) process is performed to crystallise the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The fin has a cross-sectional thickness in at least one direction less than a minimum feature size. The transistor body is formed in the crystallised semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
Latest Micron Technology, Inc. Patents:
- ITERATIVE DECODING TECHNIQUE FOR CORRECTING DRAM DEVICE FAILURES
- ITERATIVE ERROR CORRECTION IN MEMORY SYSTEMS
- Integrated Assemblies Comprising Hydrogen Diffused Within Two or More Different Semiconductor Materials, and Methods of Forming Integrated Assemblies
- APPARATUSES AND METHODS FOR ECC PARITY BIT REDUCTION
- NONLINEAR DRAM DIGITAL EQUALIZATION
This application is a divisional of U.S. application Ser. No. 11/397,430, filed Apr. 4, 2006, which is incorporated herein by reference in its entirety.
CROSS REFERENCE TO RELATED APPLICATIONSThis application is related to the following commonly assigned U.S. patent applications which are herein incorporated by reference in their entirety: U.S. application Ser. No. 11/397,527, now issued as U.S. Pat. No. 7,425,491; U.S. application Ser. No. 11/397,358, now issued as U.S. Pat. No. 8,354,311; U.S. application Ser. No. 11/397,413, now issued as U.S. Pat. No. 7,491,995; U.S. application Ser. No. 11/397,406, filed on Apr. 4, 2006.
TECHNICAL FIELDThis disclosure relates generally to semiconductor devices, and more particularly, to nanofin transistors.
BACKGROUNDThe semiconductor industry has a market driven need to reduce the size of devices, such as transistors, and increase the device density on a substrate. Some product goals include lower power consumption, higher performance, and smaller sizes.
Leakage current is a significant issue in low voltage and lower power battery-operated CMOS circuits and systems, and particularly in DRAM circuits. The threshold voltage magnitudes are small to achieve significant overdrive and reasonable switching speeds. However, as illustrated in
Some proposed designs to address this problem use transistors with ultra-thin bodies, or transistors where the surface space charge region scales as other transistor dimensions scale down. Dual-gated or double-gated transistor structures also have been proposed to scale down transistors. As commonly used in the industry, “dual-gate” refers to a transistor with a front gate and a back gate which can be driven with separate and independent voltages, and “double-gated” refers to structures where both gates are driven when the same potential. An example of a double-gated device structure is the FinFET. “TriGate” structures and surrounding gate structures have also been proposed. In the “TriGate” structure, the gate is on three sides of the channel. In the surrounding gate structure, the gate surrounds or encircles the transistor channel. The surrounding gate structure provides desirable control over the transistor channel, but the structure has been difficult to realize in practice.
Aspects of the present subject matter grow ultrathin fins of semiconductor (e.g. silicon) from amorphous semiconductor (e.g. a-silicon) using solid phase epitaxy (SPE) on a crystalline substrate. The SPE process recrystallizes the amorphous semiconductor, using the crystalline substrate to seed the crystalline growth. The amorphous nanofins are formed with dimensions smaller than lithographic dimensions by a sidewall spacer technique. The nanofins are used as the body regions of CMOS transistors where both the thickness of the body of the transistor and channel length have dimensions smaller than lithographic dimensions.
For example, some embodiments provide ultrathin nanofins with a thickness on the order of 20 nm to 50 nm.
One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment, a fin of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy (SPE) process is performed to crystallise the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The fin has a cross-sectional thickness in at least one direction less than a minimum feature size. The transistor body is formed in the crystallised semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator.
In an embodiment for forming a transistor, a silicon nitride layer is formed on a silicon wafer, and a hole is etched in the silicon nitride. The hole extends through the silicon nitride layer to the silicon wafer and is defined by the sides of the silicon nitride layer. Amorphous silicon oxide sidewall spacers are formed on the sides of the silicon nitride that define the hole. The silicon nitride layer is removed, leaving the amorphous silicon oxide sidewall spacers on the silicon wafer. The sidewall spacers are crystallised. The sidewall spacers are masked and etched to form at least one silicon fin from the sidewall spacers. The silicon fin is positioned over a doped region to function as a first source/drain region for the transistor. A surrounding gate insulator is formed around the silicon fin, and a surrounding gate is formed around and separated from the silicon fin by the surrounding gate insulator. A second source/drain region is formed in a top portion of the silicon fin.
An aspect relates to a transistor. A transistor embodiment includes a crystalline substrate, a crystalline semiconductor fin on the substrate, a gate insulator formed around the fin, and a surrounding gate formed around and separated form the fin by the gate insulator. The fin has a cross-sectional dimension that is less than a minimum feature size. The fin provides a vertically-oriented channel between a lower source/drain region and an upper source/drain region.
These and other aspects, embodiments, advantages, and features will become apparent from the following description of the present subject matter and the referenced drawings.
The following detailed description refers to the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. The various embodiments of the present subject matter are not necessarily mutually exclusive as aspects of one embodiment can be combined with aspects of another embodiment. Other embodiments may be utilised and structural, logical, and electrical changes may be made without departing from the scope of the present subject matter. In the following description, the terms “wafer” and “substrate” are interchangeably used to refer generally to any structure on which integrated circuits are formed, and also to such structures during various stages of integrated circuit fabrication. Both terms include doped and undoped semiconductors, epitaxial layers of a semiconductor on a supporting semiconductor or insulating material, combinations of such layers, as well as other such structures that are known in the art. The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side”, “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
Disclosed herein are nanofin transistors, and a fabrication technique in which vertical amorphous silicon nanofins are recrystallized on a substrate to make single crystalline silicon nanofin transistors. Aspects of the present subject matter provide nanofin transistors with vertical channels, where there is a first source/drain region at the bottom of the fin and a second source/drain region at the top of the fin.
The memory array 1037 includes a number of memory cells 1040. The memory cells in the array are arranged in rows and columns. In various embodiments, word lines 1041 connect the memory cells in the rows, and bit lines 1042 connect the memory cells in the columns. The read/write control circuitry 1038 includes word line select circuitry 1043 which functions to select a desired row, bit line select circuitry 1044 which functions to select a desired column, and read circuitry 1045 which functions to detect a memory state for a selected memory cell in the memory array 1037.
The memory may be realized as a memory device containing nanofin transistors according to various embodiments. It will be understood that embodiments are equally applicable to any size and type of memory circuit and are not intended to be limited to a particular type of memory device. Memory types include a DRAM, SRAM (Static Random Access Memory) or Flash memories. Additionally, the DRAM could be a synchronous DRAM commonly referred to as SGRAM (Synchronous Graphics Random Access Memory), SDRAM (Synchronous Dynamic Random Access Memory), SDRAM II, and DDR SDRAM (Double Data Rate SDRAM). Various emerging memory technologies are capable of using nanofin transistors.
This disclosure includes several processes, circuit diagrams, and cell structures. The present subject matter is not limited to a particular process order or logical arrangement. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and other embodiments, will be apparent to those of skill in the art upon reviewing and understanding the above description. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Claims
1. A transistor, comprising:
- a crystalline substrate;
- a crystalline semiconductor fin on the substrate, the semiconductor fin having a cross-sectional dimension that is less than a minimum feature size, wherein the fin provides a vertically-oriented channel between a lower source/drain region and an upper source/drain region;
- a gate insulator formed around the fin; and
- a surrounding gate formed around and separated from the fin by the gate insulator.
2. The transistor of claim 1, wherein the crystalline substrate is a silicon wafer.
3. The transistor of claim 1, wherein the gate insulator includes silicon oxide.
4. The transistor of claim 1, wherein the gate includes polysilicon.
5. The transistor of claim 1, wherein the gate includes metal.
6. A transistor, comprising:
- a crystalline silicon substrate;
- a first source/drain region formed in the crystalline silicon substrate;
- a crystalline silicon fin on the substrate and over the first source/drain region, the silicon fin having a cross-sectional dimension that is less than a minimum feature size;
- a second source/drain region formed in a top portion of the fin to define a vertically-oriented channel region in the fin between the first and second source/drain regions;
- a gate insulator formed around the fin; and
- a surrounding gate formed around and separated from the fin by the gate insulator.
7. The transistor of claim 6, wherein the gate insulator includes a silicon oxide.
8. The transistor of claim 6, wherein the silicon oxide gate insulator is a thermally-grown silicon oxide.
9. The transistor of claim 6, wherein the surrounding gate includes a polysilicon surrounding gate.
10. The transistor of claim 6, wherein the surrounding gate includes a metal surrounding gate.
11. A semiconductor structure, comprising:
- an array of transistors arranged in columns and rows, each transistor including a first source/drain region, a second source/drain region above the first source/drain region, and a vertically-oriented channel region between the first and second source/drain regions, the channel region being formed in a crystalline semiconductor fin having a cross-sectional thickness that is less than a minimum feature size, each transistor further including a gate insulator formed around the fin and a surrounding gate formed around and separated from the fin by the gate insulator;
- the columns of fin structures having a center-to-center spacing of approximately two minimum feature sizes; and
- the rows of fins structures having a center-to-center spacing of approximately one minimum feature size.
12. The structure of claim 11, wherein a first row and an adjacent second row has a center-to-center spacing of the minimum feature size less the thickness of the fin structures, and the second row and an adjacent third row has a center-to-center spacing of the minimum feature size plus the thickness of the fin structures.
13. The structure of claim 11, wherein the fin structure has a long side and a short side, the structure further comprising at least one gate line adjacent to the long side.
14. The structure of claim 11, wherein the fin structure has a long side and a short side, the structure further comprising at least one gate line adjacent to the short side.
15. A semiconductor structure, comprising:
- a crystalline substrate; and
- a semiconductor fin structure formed on the substrate in contact with a first source/drain region, the semiconductor fin having a thickness cross-sectional dimension less than a minimum feature size, the semiconductor pillar having a crystallised bottom portion and an amorphous top portion indicative of a partially-completed solid phase epitaxy (SPE) process.
16. The structure of claim 15, wherein the substrate includes a silicon wafer, and the semiconductor fin structure including silicon.
17. The structure of claim 15, wherein the semiconductor fin structure is one of a plurality of semiconductor fin structures formed in an array of columns and rows, the fins having a center-to-center spacing of approximately two minimum feature sizes between the columns of fin structures.
18. The structure of claim 15, wherein the semiconductor fin structure is one of a plurality of semiconductor fin structures formed in an array of columns and rows, the fins having a center-to-center spacing of approximately one minimum feature size between the rows of fin structures.
19. The structure of claim 15, wherein the semiconductor fin structure is one of a plurality of semiconductor fin structures formed in an array of columns and rows, a first row and an adjacent second row has a center-to-center spacing of a minimum feature size interval (NF) less the thickness of the fin structures, and the second row and an adjacent third row has a center-to-center spacing of the minimum feature size interval (NF) plus the thickness of the fin structures.
Type: Application
Filed: May 13, 2014
Publication Date: Sep 4, 2014
Applicant: Micron Technology, Inc. (Boise, ID)
Inventor: Leonard Forbes (Corvallis, OR)
Application Number: 14/276,473
International Classification: H01L 29/06 (20060101); H01L 21/8234 (20060101); H01L 27/088 (20060101);