APPARATUS INCLUDING AN I/O INTERFACE AND A NETWORK INTERFACE AND RELATED METHOD OF USE

-

A computer readable storage device stores instructions that, when executed by a processor, cause the processor to perform operations including receiving input/output (I/O) traffic from a host device via a dedicated I/O channel at a first interface. The I/O traffic includes a write command or a read command. The operations include receiving first data via a network at a second interface, storing second data at a cache memory, and storing third data at a storage device. The operations include accessing the cache memory during processing of the I/O traffic. The operations further include performing one or more access operations at the storage device based on the I/O traffic. The one or more access operations utilize a communication path between the processor and the storage device. The communication path is distinct from the dedicated I/O channel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims priority from and is a continuation of U.S. patent application Ser. No. 14/997,327, filed Jan. 15, 2016, which is a continuation of U.S. patent application Ser. No. 13/527,126, filed Jun. 19, 2012, which is a continuation of U.S patent application Ser. No. 10/382,016, filed Mar. 5, 2003 (now U.S. Pat. No. 8,225,002, issued Jul. 17, 2012), which is a divisional of U.S. patent application Ser. No. 09/236,409, filed Jan. 22, 1999 (now U.S. Pat. No. 6,549,988, issued Apr. 15, 2003), the contents of each of which are expressly incorporated herein by reference in their entirety.

FIELD OF THE DISCLOSURE

This disclosure relates generally to the field of cached data storage systems and more particularly to a data storage system that permits independent access from local hosts connected via I/O channels and independent access from remote hosts and remote storage systems connected via network links.

BACKGROUND

A typical data processing system generally involves a cached data storage system that connects to local host computers via I/O channels or remote host computers via network links. The purpose of the data storage system is to improve the performance of applications running on the host computer by offloading I/O processing from the host to the data storage system. The purpose of the cache memory in a data storage system is to further improve the performance of the applications by temporarily storing data buffers in the cache so that the references to those buffers can be resolved efficiently as “cache hits”. Reading data from a cache is an order of magnitude faster than reading data from a back end storage device such as a disk. Writing data to a cache is also an order of magnitude faster than writing to a disk. All writes are cache hits because data is simply copied into cache buffers that are later flushed to disks.

Prior art data storage systems are implemented using proprietary hardware and very low-level software, frequently referred to as microcode, resulting in expensive and not portable systems. In contrast to the prior art systems, an embodiment of the present disclosure uses standard hardware and software components. A network of commercial PCs is used to implement a high-performance data storage system. A method using the network of PCs includes an algorithm for a configuration manager that manages access to the distributed cache memory stored in PCs interconnected by the network. Numerous prior art systems and methods exist for managing cache memory in a data storage system. The prior art has suggested several methods for managing cache for channel attached hosts. U.S. Pat. No. 5,717,884, Gzym, et. al., Feb. 2, 1996, Method and Apparatus for Cache Management, discloses data structures and algorithms that use a plurality of slots, each of which is used to store data files. U.S. Pat. No. 5,757,473, Vishlitzky, et. al., Cache Management system using time stamping for replacement queue, Jul. 28, 1998, discloses a method that uses time stamps to manage queues in a cached data storage system. U.S. Pat. No. 5,751,993, Ofek, et. al., May 12, 1998, Cache Management Systems, discloses yet another aspect in queue management algorithms. U.S. Pat. No. 5,600,817, Macon Jr., et. al., Feb. 4, 1997, Asynchronous read-ahead disk caching using multiple disk I/O processes and dynamically variable prefetch length, discloses read-ahead methods in cached storage systems. U.S. Pat. No. 5,758,050, Brady, et. al., May 26, 1998, Reconfigurable data storage system, discloses a method for reconfiguring a data storage system.

However, the above systems use very specialized embedded operating systems and custom programming in a very low-level programming language such as assembler. The obvious drawback of the above systems is high cost because assembler-level programming is very time consuming. Another drawback is inflexibility and lack of functionality. For example, some features such as reconfigurability in data storage are very limited in proprietary embedded systems when compared to general purpose operating systems. Finally, networking support is very expensive and limited because it relies on dedicated communication links such as T1, T3 and ESCON.

One prior art system using networking of data storage systems is disclosed in U.S. Pat. No. 5,742,792, Yanai, et. al., Apr. 21, 1998, Remote Data Mirroring. This patent discloses a primary data storage system providing storage services to a primary host and a secondary data storage system providing services to a secondary host. The primary storage system sends all writes to the secondary storage system via IBM ESCON, or optionally via T1 or T3 communications link. The secondary data storage system provides a backup copy of the primary storage system. Another prior art system is disclosed in U.S. Pat. No. 5,852,715, Raz, et al., Dec. 22, 1998, System for currently updating database by one host and reading the database by different host for the purpose of implementing decision support functions.

However, the above systems use dedicated communication links that are very expensive when compared to modern networking technology. Furthermore, the data management model is limited to the primary-node sending messages to the secondary node scenario. This model does not support arbitrary read and write requests in a distributed data storage system.

There is a growing demand for distributed data storage systems. In response to this demand some prior art systems have evolved into complex assemblies of two systems, one proprietary a data storage system and the other an open networking server. One such system is described in a white paper on a company web site on Internet. The industry white paper, EMC Data Manager: A high-performance, centralized open system backup/restore solution for LAN-based and Symmetrix resident data, describes two different systems, one for network attached hosts and second for channel attached hosts. The two systems are needed because of the lack of generic networking support. In related products such as Celerra File Server, product data sheets suggest using data movers for copying data between LAN-based open system storage and channel attached storage system.

However, the above systems are built from two systems, one for handling I/O channels, and another for handling open networks. Two systems are very expensive even in minimal configuration that must include two systems.

In another branch of storage industry, network attached storage systems use network links to attach to host computers. Various methods for managing cache memory and distributed applications for network attached hosts have been described in prior art. U.S. Pat. No. 5,819,292, Hitz, et. al., Method for maintaining consistent states of a file system and for creating user-accessible read-only copies of a file system, Oct. 6, 1998, U.S. Pat. No. 5,644,751, and Burnett, et. al., Jul. 1, 1997, Distributed file system (DFS) cache management system based on file access characteristics, discloses methods for implementing distributed file systems. U.S. Pat. No. 5,649,105, Aldred, et. al., Jul. 15, 1997, Collaborative working in a network, discloses programming methods for distributed applications using file sharing. U.S. Pat. No. 5,701,516, Chen, et. al., Dec. 23, 1997, High-performance non-volatile RAM protected write cache accelerator system employing DMA and data transferring scheme, discloses optimization methods for network attached hosts. However, those systems support only network file systems. Those systems do not support I/O channels.

In another application of storage systems, U.S. Pat. No. 5,790,795, Hough, Aug. 4, 1998, Media server system which employs a SCSI bus and which utilizes SCSI logical units to differentiate between transfer modes, discloses a media server that supports different file systems on different SCSI channels. However, the system above is limited to a video data and does not support network attached hosts. Furthermore, in storage industry papers, Data Sharing, by Neema, Storage Management Solutions, Vol. 3, No. 3, May, 1998, and another industry paper, Storage management in UNIX environments: challenges and solutions, by Jerry Hoetger, Storage Management Solutions, Vol. 3, No. 4, survey a number of approaches in commercial storage systems and data sharing. However, existing storage systems are limited when applied to support multiple platform systems.

Therefore, a need exists to provide a high-performance data storage system that is assembled out of standard modules, using off-the-shelf hardware components and a standard general-purpose operating system that supports standard network software and protocols. In addition, the need exists to provide a cached data storage system that permits independent data accesses from I/O channel attached local hosts, network attached remote hosts, and network-attached remote data storage systems.

SUMMARY

A disclosed aspect is a distributed cache that supports arbitrary reads and writes arriving via I/O channels or network links, as well as a method for sharing data between two or more heterogeneous host computers using different data formats and connected to a data storage system. The method includes a translation module that inputs a record in a format compatible with the first host and stores the translated record in a data format compatible with the second host. Sharing of data in one format and having a translation module permitting representations in different formats in cache memory improves performance of I/O requests and saves disk storage space.

In a particular aspect, a computer readable storage device stores instructions that, when executed by a processor, cause the processor to perform operations including receiving input/output (I/O) traffic from a host device via a dedicated I/O channel at a first interface. The I/O traffic includes a write command. The operations include receiving first data via a network at a second interface, storing second data at a cache memory, and storing third data at a storage device. The operations include accessing the cache memory during processing of the I/O traffic. The operations further include performing one or more access operations at the storage device based on the I/O traffic. The one or more access operations utilize a communication path between a processor and the storage device. The communication path is distinct from the dedicated I/O channel.

In another particular aspect, a computer readable storage device stores instructions that, when executed by a processor, cause the processor to perform operations including receiving input/output (I/O) traffic from a host device via a dedicated I/O channel at a first interface. The I/O traffic includes a read command. The operations include receiving first data via a network at a second interface, storing second data at a cache memory, and storing third data at a storage device. The operations include accessing the cache memory during processing of the I/O traffic. The operations further include performing one or more access operations at the storage device based on the I/O traffic. The one or more access operations utilize a communication path between a processor and the storage device. The communication path is distinct from the dedicated I/O channel.

The drawings constitute a part of this specification and illustrate exemplary embodiments, which may be in various forms.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows data storage systems configurations;

FIG. 2 illustrates in block diagram form an alternate embodiment of a data storage system;

FIG. 2A illustrates in block diagram form another alternate embodiment of the data storage system;

FIG. 2B illustrates in block diagram form another alternate embodiment of the data storage system;

FIG. 3 shows a PC data storage system;

FIG. 4 illustrates in data flow diagram form the operations of a data storage system including: FIG. 4A illustrating operations in write exclusive mode, FIG. 4B in read exclusive mode, FIG. 4C in write shared mode, FIG. 4D in read shared mode, FIG. 4E in disk interrupt, FIG. 4F in page flusher; and

FIG. 5 illustrates in block diagram form data sharing operations.

DETAILED DESCRIPTION

Detailed descriptions of embodiments are provided herein. It is to be understood, however, that the present disclosure may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting.

FIG. 1 illustrates data storage system configurations. The PC data storage system 131 services a plurality of channel attached host processors 111, 112 using channels 121, 122, and a plurality of network attached host processors 106, 107 using network link 151, and a plurality of network attached data storage systems 132, 133 using network links 152, 153. PC storage system 132 services channel attached hosts 157, 158.

Hosts 157 and 158 access a data storage system 131 indirectly via network attached data storage system 132, thereby offloading communications protocol overhead from remote hosts 157, 158. Hosts 106 and 107 directly access storage system 131 via network link 151 thereby incurring communications protocol overhead on hosts 106, 107 and therefore decreasing performance of applications running on said hosts.

Host 111 accesses remote disk 181 via local data storage system 131, network link 153, and remote data storage system 133 without incurring protocol overhead on host 111. Host 157 accesses disk 161 via data storage system 133, network link 152, and data storage system 131 without incurring protocol overhead on host 157. Host 106 directly accesses local disk 161 via network link 151 thereby incurring protocol overhead. The disks 191, 192 that are attached to hosts 106, 107 without a data storage system, cannot be accessed by outside hosts.

An illustrative embodiment uses well-established technologies such as SCSI channels for I/O traffic and Ethernet link for network traffic. In FIG. 2, an alternate embodiment uses fiber channel technology for both I/O traffic and network traffic. The fiber channel connects computers and hard disks into one logical network. In one variation of the alternate embodiment in FIG. 2, the fiber optics link is organized as a Fiber Channel Arbitrated Loop (FCAL). In another variation shown in FIG. 2A, the fiber optics link is organized as a switching network. In yet another variation shown in FIG. 2B, the fiber channel is organized in two FCAL loops connected via switch.

FIG. 3 shows a software architecture and modules of a PC data storage system corresponding to the data storage system 131 in FIG. 1. Data is received from the hosts 111, 112 via I/O channels 121, 122 in front-end software module 310 in FIG. 3. The front-end module 310 handles channel commands and places the results in cache memory 322 in the form of new data or modification to data already stored on the disk 161. The cache manager software module 320 calls routines in the configuration manager 340 to ensure consistency of the cache memory in other network attached data storage systems. At some later point in time, the back-end software module 342 invokes a page flusher module to write modified data to disks 161 and 162 and free up cache memory.

In FIG. 3, front-end module 310 including I/O adapter driver has been modified to accept target SCSI I/O requests from hosts 111 and 112. Said front-end module handles I/O requests in such a manner that hosts 111 and 112 are not aware of a data storage system. Hosts 111 and 112 issue I/O requests as if the request is going to a standard disk.

The presence of fast access cache memory permits front end channels and network links to operate completely independent of the back-end physical disk devices. Because of this front-end/back-end separation, the data storage system 131 is liberated from the I/O channel and network timing dependencies. The data storage system is free to dedicate its processing resources to increase performance through more intelligent scheduling and data transfer network protocol.

FIG. 4 shows a flowchart of a data storage system in the process of reading or writing to data volumes stored on disk drives shown in FIG. 3. The flowchart uses a volume access table 450 (see also FIG. 5) and is controlled by the configuration manager. Local operations begin in step 401 where the corresponding front-end module 310 of FIG. 3 allocates a channel and waits for I/O requests from the initiating hosts 111 or 112. Remote operations begin in step 402. Depending upon the status of the value in a volume access table 450 the requests are routed either as shown in FIG. 4A for write exclusive mode, FIG. 4B for read exclusive mode, FIG. 4C for write shared mode or FIG. 4D for read shared mode. Concurrently with the processing of I/O operations, the independent page flusher daemon shown in FIG. 4F scans cache memory and writes buffers to disks. Disk interrupt processing is shown in FIG. 4E.

Volume access table 450 (see FIG. 4) contains a mapping between hosts and volumes specifying an access mode value. If the access mode is set neither to shared nor exclusive, the configuration manager forwards I/O requests directly to disk. In addition to the access mode, the volume access table may contain other values that help the configuration manager and improve performance of the data storage system.

In another embodiment of this application, shown in FIG. 5, the volume access table includes a translation module for a given host to facilitate volume mapping. The translation module is a dynamically loadable library that can be changed, compiled and linked at run-time.

A user of a data storage system can externally set the values and parameters in a volume access table. For each host and volume pair, a user can explicitly specify the access mode value. For some applications, where data on a remote volume is accessed infrequently, the user may want to specify other than shared or exclusive in order to disable cache for the remote volume. By disabling caching, the user eliminates cache coherency traffic entirely for the volume. In a data storage system, a user or a system administrator actively monitors and changes the behavior of a cache manager by changing values in a volume access table in order to improve performance of the data storage system.

FIG. 4A shows a flowchart of the cache manager 320 (see FIG. 3) as it processes a write request in an exclusive mode. In step 411 of FIG. 4A, the cache manager checks whether the requested buffer is in cache or not. For a cache miss, in step 412, the cache manager allocates a new buffer for storing data that will be written. For a cache hit, the cache manager branches directly to step 413 where data is copied into the newly allocated buffer. In step 414, the cache manager calls a configuration manager routine that sends an invalidate request to the list of shared hosts for this particular volume. In step 415, the cache manager checks the type of a request. For a channel type of a request, the cache manager returns to step 405 to release the channel. For a network type of a request, the cache manager proceeds to release network request in step 419 on the right side of FIG. 4A.

On the right side of FIG. 4A, in step 416, network interrupt identifies and receives a remote write request. In step 417, the cache manager calls configuration manager routine to determine the validity of the request. Bad requests are ignored in step 418. Correct requests proceed to step for 410 for write exclusive processing. Step 415 returns the flow to step 419, which releases network resources.

FIG. 4B shows a flowchart of the cache manager as it processes a read request in an exclusive mode. In step 420, the cache manager checks whether the requested buffer is in cache or not. For a cache miss, in step 421, the cache manager allocates a buffer for storing data that will be read in. In step 422, the cache manager updates the buffer status with read pending. In step 423, the cache manager starts an operation to read from a hard disk driver and proceeds to release the channel in step 405. For a cache hit, in step 424, the cache manager transmits read data and proceeds to release the channel in step 405. For an identified network request, in step 425, the cache manager sends back read results in step 429.

On the right side of FIG. 4B, in step 426, network interrupt identifies and receives a remote read request. In step 427, the cache manager calls a configuration manager routine that checks the configuration file and ignores bad requests in step 428. Correct requests proceed to step 420 for read exclusive processing. Step 425 returns the flow to step 429 that sends read results.

FIG. 4C shows a flowchart of the cache manager as it processes a write request in a shared mode. In step 430, the cache manager checks whether the requested buffer is in cache or not. For a cache miss, in step 431, the cache manager allocates a new buffer for storing data that will be written. For a cache hit, the cache manager branches directly to step 432 where data is copied into the newly allocated buffer. In step 433, the cache manager updates the buffer status with write pending and proceeds to step 434 to release the channel. In step 435, the cache manager calls a configuration manager routine that sends a remote write request to the host that holds this particular volume in an exclusive mode. In follow up to step 435, the cache manager returns to the beginning of FIG. 4.

On the right side of FIG. 4C, the cache manager updates the buffer status with write done in step 444. The flow begins with the network interrupt that calls configuration manager to validate the request in step 441. Bad requests are ignored in step 442. A correct request proceeds to step 443 that checks whether the status of this particular buffer is write pending. If the status is pending, in step 444, the cache manager updates the buffer status to write done. For any other buffer status, in step 445, the cache manager updates the status to free. This buffer is released in accordance with the invalidate request that has come from a remote host that holds this volume in an exclusive mode as has been described in FIG. 4A.

FIG. 4D shows a flowchart of the cache manager as it processes a read request in a shared mode. In step 450, the cache manager checks whether the requested buffer is in cache or not. For a cache miss, in step 452, the cache manager allocates a buffer for storing data that will be read into. For a cache hit, in step 451, the cache manager transmits read data and proceeds to step 405 to release the channel. In the case of the cache miss, the cache manager allocates a new buffer in step 452 and updates its status to read pending in step 453. In step 454, the cache manager closes the channel with an optimizer that maintains a pool of open channels which are kept open only for the specified amount of time. In step 455, the cache manager calls configuration manager routine that sends a remote read request to the host that holds this particular volume in an exclusive mode. The operations of the host holding volume in read exclusive mode have been shown in FIG. 4B.

On the right side of FIG. 4D, in step 456, a network interrupt identifies a remote read result. In step 457, the cache manager performs an optimized channel open. Depending upon the status of the optimizer that has been initiated in step 454, the cache manager may immediately get access to the still open channel or, if the optimizer fails, the cache manager may need to reopen the channel. In step 458, the cache manager transmits read data. In step 459, the cache manager updates the buffer status to read done and proceeds to step 459 where it releases the channel.

FIG. 4E shows a flowchart of the cache manager as it processes a hard disk interrupt request marking the completion of a read or write request. The read request has been started in step 423 in FIG. 4B. The write request has been started in step 475 in FIG. 4F. In step 460, the cache manager checks the type of the hardware interrupt. For a write interrupt in step 461, the cache manager updates the buffer status to write done and releases resources associated with the interrupt. For a read interrupt in step 462, the cache manager updates the buffer status to read done. In step 463, the cache manager checks request type of the read operation that has been started in FIG. 4B. For a channel request, the cache manager proceeds to open a channel in step 466. In step 467, the cache manager transmits read data and proceeds to release the channel in step 405. For a network request in step 464, the cache manager finds the remote read requests that initiated the request. In step 466, the cache manager sends read results and ends interrupt processing.

FIG. 4F shows a flowchart of a cache memory page flusher. The flusher is a separate daemon running as part of the cache manager. In step 471, the flusher waits for the specified amount of time. After the delay in step 472, the flusher begins to scan pages in cached memory. In step 473, the flusher checks the page status. If the page list has been exhausted in branch no more pages, the flusher returns to step 471 where it waits. If the page status is other than the write pending, the flusher returns to step 472 to continue scanning for more pages. If the page status is write pending, the flusher proceeds to step 474. In step 474, the flusher checks the request type. For a channel type, the flusher starts a read operation in step 475 and returns to scan pages in step 472. For a network type, the flusher checks for the network operations in progress and returns to step 472 for more pages.

FIG. 5 shows a data sharing operation between a plurality of heterogeneous host computers. In one embodiment the plurality of hosts includes but is not limited to a Sun Solaris workstation 111, Windows NT server 112, HP UNIX 106, and Digital UNIX 107 each accessing a distinct virtual device respectively 510, 520, 530 and 540. Configuration manager 560 provides concurrency control for accessing virtual devices that are mapped to the same physical device 161. The configuration manager uses a volume access table 450 that has been shown in FIG. 4.

A virtual device is a method that comprises three operations: initialization, read and write. The initialization operation registers a virtual device in an operating system on a heterogeneous host. Following the registration, the virtual device appears as if it is another physical device that can be brought on-line, offline or mounted on a file system. An application program running on the host cannot distinguish between a virtual device and a physical device.

For a virtual device, the read operation begins with a read from a physical device followed by a call to a translation module. The translation module inputs a shared record in an original format used on a physical disk and outputs the record in a new format that is specified for and is compatible with a host computer. The write operation begins with a call to a translation module that inputs a record in a new format and outputs a record in a shared format. The translation module is a dynamically loadable library that can be changed, compiled and linked at run-time.

The virtual device method described above allows a plurality of heterogeneous host computers to share one copy of data stored on a physical disk. In a data storage system using said virtual device method, a plurality of virtual devices is maintained in cache without requiring a copy of data on a physical disk.

While the illustrative embodiments have been described, it is not intended to limit the scope of the disclosure to the particular form(s) set forth.

Claims

1. A computer readable storage device storing instructions that, when executed by a processor, cause the processor to perform operations comprising:

receiving input/output (1/0) traffic from a host device via a dedicated I/O channel at a first interface, the I/O traffic comprising a write command;
receiving first data via a network at a second interface;
storing second data at a cache memory;
storing third data at a storage device;
accessing the cache memory during processing of the I/O traffic; and
performing one or more access operations at the storage device based on the I/O traffic, the one or more access operations utilizing a communication path between the processor and the storage device, the communication path distinct from the dedicated I/O channel.

2. The computer readable storage device of claim 1, wherein the I/O traffic is distinct from the first data.

3. The computer readable storage device of claim 1, wherein the operations further comprise performing a first access operation at the storage device independently of the dedicated I/O channel.

4. The computer readable storage device of claim 1, wherein the second data is written at the cache memory in response to the write command.

5. The computer readable storage device of claim 1, wherein the operations further comprise:

receiving a read request via the network; and
transmitting at least a portion of the second data from the cache memory via the network.

6. The computer readable storage device of claim 1, wherein the operations further comprise storing fourth data at the cache memory, wherein the second data is indicated by the write command, and wherein the fourth data is indicated by a second write command received at the second interface.

7. The computer readable storage device of claim 1, wherein the second interface comprises an Ethernet interface.

8. The computer readable storage device of claim 1, wherein the second interface comprises an asynchronous transfer mode (ATM) interface.

9. The computer readable storage device of claim 1, wherein the I/O traffic further comprises a read command.

10. The computer readable storage device of claim 1, wherein the first data comprises a read request, a write request, or a combination thereof.

11. A computer readable storage device storing instructions that, when executed by a processor, cause the processor to perform operations comprising:

receiving input/output (I/O) traffic from a host device via a dedicated I/O channel at a first interface, the I/O traffic comprising a read command;
receiving first data via a network at a second interface;
storing second data at a cache memory;
storing third data at a storage device;
accessing the cache memory during processing of the I/O traffic; and
performing one or more access operations at the storage device based on the I/O traffic, the one or more access operations utilizing a communication path between the processor and the storage device, the communication path distinct from the dedicated I/O channel.

12. The computer readable storage device of claim 11, wherein the I/O traffic is distinct from the first data.

13. The computer readable storage device of claim 11, wherein the operations further comprise performing a first access operation at the storage device independently of the dedicated I/O channel.

14. The computer readable storage device of claim 11, wherein the operations further comprise routing the read command to the cache memory or to the storage device.

15. The computer readable storage device of claim 11, wherein the operations further comprise:

receiving a read request via the network; and
transmitting at least a portion of the second data from the cache memory via the network.

16. The computer readable storage device of claim 11, wherein the operations further comprise storing fourth data at the cache memory, wherein the fourth data is indicated by a write command received at the second interface.

17. The computer readable storage device of claim 11, wherein the second interface comprises an Ethernet interface.

18. The computer readable storage device of claim 11, wherein the second interface comprises an asynchronous transfer mode (ATM) interface.

19. The computer readable storage device of claim 11, wherein the I/O traffic further comprises a write command.

20. A computer readable storage device storing instructions that, when executed by a processor, cause the processor to perform operations comprising:

receiving input/output (I/O) traffic from a host device via a dedicated I/O channel at a first interface, the I/O traffic comprising a read command, a write command, or a combination thereof;
receiving first data via a network at a second interface, wherein the network comprises the Internet, and wherein the first data is distinct from the I/O traffic;
storing second data at a cache memory;
storing third data at a storage device;
accessing the cache memory during processing of at least one command of the I/O traffic; and
performing one or more access operations at the storage device based on one or more commands included in the I/O traffic, the one or more access operations utilizing a communication path between a processor and the storage device, the communication path distinct from the dedicated I/O channel, wherein the storage device and the dedicated I/O channel are independently accessible by the processor.
Patent History
Publication number: 20190075163
Type: Application
Filed: Nov 5, 2018
Publication Date: Mar 7, 2019
Applicant:
Inventor: llya Gertner (Long Beach, CA)
Application Number: 16/180,657
Classifications
International Classification: H04L 29/08 (20060101); G06F 3/06 (20060101); G06F 17/30 (20060101); G06F 12/128 (20160101); G06F 12/0808 (20160101); G06F 12/12 (20160101);