METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH LARGE HEAT LOADS USING DESICCANT CHILLERS
A system for providing cooling to a building includes a cooling tower for transferring waste heat from the building to the atmosphere and a liquid desiccant system for dehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower. The liquid desiccant system includes a conditioner and a regenerator. The conditioner utilizes a liquid desiccant for dehumidifying the air stream entering the cooling tower. The regenerator is connected to the conditioner for receiving dilute liquid desiccant from the conditioner, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.
This application is a continuation of U.S. patent application Ser. No. 15/362,288, filed on Nov. 28, 2016 entitled METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH LARGE HEAT LOADS USING DESICCANT CHILLERS, which in turn is a continuation of U.S. patent application Ser. No. 14/096,445, filed on Dec. 14, 2013 entitled METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH LARGE HEAT LOADS USING DESICCANT CHILLERS, which claims priority from U.S. Provisional Patent Application No. 61/733,209 filed on Dec. 4, 2012 entitled DESICCANT SYSTEMS and U.S. Provisional Patent Application No. 61/787,948 filed on Mar. 15, 2013 entitled METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH LARGE HEAT LOADS USING DESICCANT CHILLERS, which are all hereby incorporated by reference.
BACKGROUNDThe present application relates generally to the use of liquid desiccants to dehumidify an air stream entering a cooling tower. More specifically, the application relates to a cooling system construction that operates using a 2- or 3-way liquid desiccant mass and heat exchanger that can dehumidify an air stream entering a cooling tower, wherein the desiccant is absorbing moisture from the air stream in such a way that the cooling tower experiences a much higher temperature drop than is normally the case, and wherein the desiccant is subsequently regenerated using a waste heat source, which—if available—can be waste heat from the building itself, to which cooling is provided.
Datacenters are an example of buildings that contain a large amount of equipment that generates a large amount of sensible heat. Other examples include semiconductor manufacturing facilities, plastics processing facilities, industrial facilities, and other buildings where large internal sensible heat loads need to be dissipated. Datacenters typically do not have a large number of people in their space, so there is typically no need to bring in a lot of outside air, and therefore the outside air (which in other buildings can be as much as 60% of the overall heat- and moisture-load of a building) does generally not constitute a large load for a datacenter and neither is there a large humidity (latent) heat-load in the datacenter itself. Oftentimes the sensible heat that is generated in these buildings by computers and the like is rejected to a chilled water or cooling water loop that is connected to a central chiller facility, which in turn rejects its heat to a cooling tower. The problem with cooling towers is that in hot, humid climates, the cooling tower is unable to evaporate a lot of water and thus the temperature drop in the cooling water is not very large. This means that either the cooling tower has to be oversized or other means of heat rejection have to be employed. Most of the heat in a datacenter is rejected to a chilled water loop and some is rejected to the air in the datacenter which is replenished with outside air. Datacenters in effect use a lot of electricity and reject the heat that the electrical consumption generates to a chiller plant and eventually to a cooling tower. It could be very desirable if the datacenter's waste heat could be used for other purposes, in particular if the heat could be used for more efficient cooling of the datacenter itself.
Liquid desiccants have been used parallel to conventional vapor compression HVAC equipment to help reduce humidity in spaces, particularly in spaces that require large amounts of outdoor air or that have large humidity loads inside the building space itself. Humid climates, such as for example Miami, Fla. require a lot of energy to properly treat (dehumidify and cool) the fresh air that is required for a space's occupant comfort. Liquid desiccant systems are however not very common on datacenters and the like, simply because datacenters have large sensible loads internally and not large latent loads, nor do datacenter use large amounts of outside air. However, the cooling towers that support a datacenter do have large latent loads since they take in outside air. It would therefore be desirable to supply these cooling towers with dry air to improve their efficiency.
Liquid desiccant systems have been used for many years and are generally quite efficient at removing moisture from an air stream. However, liquid desiccant systems generally use concentrated salt solutions such as ionic solutions of LiCl, LiBr, or CaCl2) and water. Such brines are strongly corrosive, even in small quantities, so numerous attempts have been made over the years to prevent desiccant carry-over to the air stream that is to be treated. In recent years efforts have begun to eliminate the risk of desiccant carry-over by employing micro-porous membranes to contain the desiccant. An example of such as membrane is the EZ2090 poly-propylene, microporous membrane manufactured by Celgard, LLC, 13800 South Lakes Drive Charlotte, N.C. 28273. The membrane is approximately 65% open area and has a typical thickness of about 20 μm. This type of membrane is structurally very uniform in pore size (100 nm) and is thin enough to not create a significant thermal barrier. It has been shown that these membranes are effective in inhibiting desiccant carry-over.
Liquid desiccant systems generally have two separate components. The conditioning side of the system provides conditioning of air to the required conditions, which are typically set using thermostats or humidistats. The regeneration side of the system provides a reconditioning function of the liquid desiccant most often using heat, so that it can be re-used on the conditioning side. Liquid desiccant is typically pumped between the two sides through a heat exchanger so as to prevent a large heat load from the regenerator on the conditioner.
There thus remains a need to provide a cooling system for datacenters and other buildings with high heat loads, wherein the datacenter's internally generated heat could be used for a more efficient cooling of the datacenter itself.
BRIEF SUMMARYIn accordance with one or more embodiments, a system is provided for providing cooling to a building. The system includes a cooling tower for transferring waste heat from the building to the atmosphere and a liquid desiccant system for dehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower. The liquid desiccant system includes a conditioner and a regenerator. The conditioner utilizes a liquid desiccant for dehumidifying the air stream entering the cooling tower. The regenerator is connected to the conditioner for receiving dilute liquid desiccant from the conditioner, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.
Provided herein are methods and systems used for the efficient dehumidification of an air stream using a liquid desiccant. In accordance with one or more embodiments, the liquid desiccant is running down the face of a support plate as a falling film. In accordance with one or more embodiments, the desiccant is contained by a microporous membrane and the air stream is directed in a primarily vertical orientation over the surface of the membrane and whereby both latent and sensible heat are absorbed from the air stream into the liquid desiccant. In accordance with one or more embodiments, the support plate is filled with a heat transfer fluid that ideally is flowing in a direction counter to the air stream. In accordance with one or more embodiments, the system comprises a conditioner that removes latent and sensible heat through the liquid desiccant and a regenerator that removes the latent and sensible heat from the system. In accordance with one or more embodiments, the heat transfer fluid in the conditioner is cooled by an external source of cold heat transfer fluid. In accordance with one or more embodiments, the regenerator is heated an external source of hot heat transfer fluid.
In accordance with one or more embodiments, the liquid desiccant conditioner is providing treated air to a cooling tower thereby making the cooling tower a more efficient device. In one or more embodiments, the treated air is cooler than the air would have been without a liquid desiccant dehumidifier. In one or more embodiments, the treated air is drier than the air would have been without a liquid desiccant dehumidifier. In one or more embodiments, the conditioner contains membranes to contain the liquid desiccant. In accordance with one or more embodiments the liquid desiccant conditioner is receiving cold water from the same cooling tower. In one or more embodiments, the cold water is delivered by a chiller system.
In accordance with one or more embodiments, the liquid desiccant regenerator is provided a warm air stream by directing a warm air stream from a building with high internal heat loads to the regenerator. In one or more embodiments, the regenerator receives hot waste water from the building. In one or more embodiments, the hot waste water and/or hot waste air is used to concentrate a desiccant.
In accordance with one or more embodiments, the external sources of cold and hot heat transfer fluid are idled while heat is transferred from the building with high heat load to the liquid desiccant side of the system. In one or more embodiments, the regenerator functions as a replacement for a cooling tower. In one or more embodiments, the conditioner and regenerator are both acting like a cooling tower. In one or more embodiments, the cooling tower and chiller are bypassed and the liquid desiccant system is actively cooling the datacenter. In one or more embodiments, the compressor of the chiller system is bypassed and liquid refrigerant is pumped without the use of a compressor.
In no way is the description of the applications intended to limit the disclosure to these applications. Many construction variations can be envisioned to combine the various elements mentioned above each with its own advantages and disadvantages. The present disclosure in no way is limited to a particular set or combination of such elements.
The liquid desiccant is collected at the bottom of the wavy plates at 511 and is transported through a heat exchanger 513 to the top of the regenerator 502 to point 515 where the liquid desiccant is distributed across the wavy plates of the regenerator. Return air or optionally outside air 505 is blown across the regenerator plate, and water vapor is transported from the liquid desiccant into the leaving air stream 506. An optional heat source 508 provides the driving force for the regeneration. The hot transfer fluid 510 from the heat source can be put inside the wavy plates of the regenerator similar to the cold heat transfer fluid on the conditioner. Again, the liquid desiccant is collected at the bottom of the wavy plates 502 without the need for either a collection pan or bath so that also on the regenerator the air can be vertical. An optional heat pump 516 can be used to provide cooling and heating of the liquid desiccant. It is also possible to connect a heat pump between the cold source 507 and the hot source 508, which is thus pumping heat from the cooling fluids rather than the desiccant.
Having thus described several illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to form a part of this disclosure, and are intended to be within the spirit and scope of this disclosure. While some examples presented herein involve specific combinations of functions or structural elements, it should be understood that those functions and elements may be combined in other ways according to the present disclosure to accomplish the same or different objectives. In particular, acts, elements, and features discussed in connection with one embodiment are not intended to be excluded from similar or other roles in other embodiments. Additionally, elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions. Accordingly, the foregoing description and attached drawings are by way of example only, and are not intended to be limiting.
Claims
1. A system for providing cooling to a building, comprising:
- a cooling tower for transferring waste heat from the building to the atmosphere; and
- a liquid desiccant system for dehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower, said liquid desiccant system comprising: a conditioner utilizing a liquid desiccant for dehumidifying the air stream entering the cooling tower; and a regenerator connected to the conditioner for receiving dilute liquid desiccant from the conditioner, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.
2-34. (canceled)
Type: Application
Filed: Jul 17, 2018
Publication Date: May 16, 2019
Inventor: Peter F. Vandermeulen (Newburyport, MA)
Application Number: 16/037,384