Method of transmitting sensor data created in a game environment to a set of processors outside the game environment based on predefined
Players of tournament games require a network for them to play with one another remotely. But, in order for play to occur simultaneously, players must be informed that a game is ongoing or underway. Similarly, if one player wishes another player to join, the one player must invite the other, by in part, informing the other player of the time and location of play as well as information specific to the game the one player is participating in or forming. Accordingly, a communication means is required to bring players together. A communication means for remote players does not exist for players of real-world games where players use physical instruments where game data is based at least in part on sensor-acquired data.
This application is a continuation of U.S. patent application Ser. No. 15/466,569, which is a continuation-in-part of U.S. patent application Ser. No. 12/799,529, filed Apr. 26, 2010, which is a divisional and claims the benefit and priority of U.S. patent application Ser. No. 09/570,233, filed May 12, 2000, both of which, in turn, claims the benefit and priority of U.S. provisional patent application 60/133,722, filed May 12, 1999. The above referenced applications are incorporated herein by reference as if restated in full.
BACKGROUNDPlayers of tournament games require a network to enable them to play with one another remotely. But, in order for play to occur simultaneously, players must be informed that a game is ongoing or underway. Similarly, if one player wishes another player to join, the one player must invite the other, by in part, informing the other player of the time and location of play as well as information specific to the game the one player is participating in or forming. Accordingly, a communication means is required to bring players together. A communication means for remote players does not exist for players of real-world games where players use physical instruments where game data is based at least in part on sensor-acquired data.
SUMMARYThis invention relates to a system that interconnects a golf club or other sports implements to a computer. From hereon, sports equipment, sports equipment items, is an example of a gaming unit, tool, or item, and the latter should be understood to be included in the former. In a preferred embodiment, the computer is coupled wirelessly to a sports implement component. Further, the invention, with components summarized below, allows participants to be paired or grouped together to enter into a game competition against each other. Each player asks the computer who is available to play a contest via the internet to the game server. Once a player pairs up against another player anywhere in the world and game play ensues, each local computer display shows each participant's score via animation or graphics that preferably relate to a player's individual performance statistics. A single player may play without an opponent to practice and improve basic sports skills using the computer and display to track performance.
A wireless piece of sporting equipment is constructed to contain, or alternatively a standard piece of sporting equipment is modified to contain multiple sensors or a transducer array located on the surface of said sports equipment, gaming tool, or sports implement and GPS sensing circuitry, an accelerometer, and a gyroscope. Moreover, a gyroscope is hereon and heretofore understood to be synonymous with a gyrometer and the latter is understood to be included in the former.
In one embodiment, the sporting equipment is a hockey stick, coupled with a hockey puck, race car steering wheel coupled with a driver's hand, bow coupled with an arrow, boxing gloves coupled with a fist, tennis racket coupled with a tennis ball, basketball ball coupled with a shooting hand, football coupled with a throw, bicycle coupled with a pedal, bowling ball coupled with a bowling throw, soccer coupled with a kick, volleyball coupled with a hitting hand, baseball bat coupled with a baseball, all using sensors including accelerometers, gyroscopes and a compass, and or a combination of multiple sensing devices. It should be noted that sports like football would require a sensor-based football and sensors on the hand of the quarterback for a full range of interactive data. As an example upon impact of the tennis racket with a tennis ball, or impact of the baseball bat with a baseball, the impacted sensors produce detectable variances representing the magnitude and duration of the racket-ball impact force, or baseball impact force, and the proximate location of such contact relative to the preferred location, the “sweet spot”, on the face of the tennis racket or baseball bat. The variances are electronically processed into digitally coded information and remotely transmitted by an electrical communication circuit either contained within or attached to the tennis racket or sports implement. In the case of a virtual game and therefore a virtual impact, the game implement simulates the impact based on the velocity, acceleration, and spatial orientation of the game implement itself at the point of a virtual impact. A game projectile or object can therefore be real or virtual.
The system responds to a predefined event occurring within a gaming environment by automatically transmitting an alert or message to a person outside the gaming environment, comprising: a game server, that includes a processor and a memory storing a number of machine instructions: the game server being included within a gaming service that established the gaming environment and further including a communication interface that couples the game server to a network, and the processor executes the machine instructions stored in the memory, causing the processor to carry out a number of functions, including: detecting when a predefined event occurs within the gaming environment, the gaming environment provides a secure and limited access such that players only gain access to the gaming environment through a secure gateway, the secure gateway is inaccessible by any person communicating over a network that is outside of the gaming environment, and the network is accessible from within the gaming environment by players participating in the gaming environment, and in response to detecting the predefined event, initiating transmission of an alert or message to a person outside the gaming environment over the network.
The system further comprising an alerts service having a server that includes a communication interface, a memory, and a processor coupled to a communication interface, and the memory of the alert server, the processor of the alert server executes the machine instructions stored in the memory of the alert server to carry out a further number of functions, including receiving at least an indicia of information to be included in the alert or message, transmitted from the game server and in response, transmitting the alert or message to a person outside the gaming environment over the network. The system sends the alert or message, which is transmitted over the network as an email. The system sends the alert or message, which is transmitted over the network to a communication system that re-transmits the alert or message to a portable communication device. The system's machine instructions stored in the memory of the game server further cause the processor of the game server to map an identifier of the person within the gaming environment to a corresponding identifier that is used to identify that person on the network, so that the alert message will be sent to that person by the alert server outside the gaming environment. Moreover, a processor or equivalently a computer processor is hereon and heretofore understood to be, and or comprise, a microcontroller and or a microprocessor or a microcomputer, and each of the latter is understood to be included in the former.
The system's execution of the machine instructions causes the game server to detect that the predefined event has occurred when a player gains access to the gaming environment, execution of the machine instructions causes the processor to initiate transmittal of information, identifying the player to at least one person who is on a list of the player, where the list is stored in the memory. The systems alert or message comprises an invitation to at least one person to access the gaming environment and participate in playing a game, thereon with the player. The systems information included in the alert or message relates to payment or billing a player for services rendered in the gaming environment. The systems information included in the alert or message refers to a change in a gaming content within the gaming environment. The systems information included in the alert or message is a reminder to a player to play a previously scheduled game within the gaming environment.
The system's execution of machine instructions, further causes the processor to enable a person to select at least one form in which alert or messages will be transmitted, in response to the predefined event, at least one said form being selectable from a plurality of different forms. The system's number of forms include an email, a pop-up that is displayable, and a message perceivable on a portable communication device that is coupled to a communications system.
A system for interactive processing, wherein the system comprises a number of sports equipment, wherein each sports equipment is provided with sensors, such that a set of sensor data related to the game equipment is captured, and each sports equipment also comprises a communication device associated with the sports equipment for establishing a communication link with an Internet server, wherein the Internet server is provided with an application that is arranged to relate the data transferred from different game equipment to one another. The system sensor is capable of capturing at least one type of data selected from the group comprising data, which are characteristic of the movement of the sports game equipment, physiological data of the user of the sports game equipment, and data describing the spatial orientation and position of the sports game equipment.
The system, wherein the sports game equipment includes a clock generating a time signal and electronic processing associating the sensor data with the time signal. The system, wherein at least one of the sports equipment comprises a number of sensors including a location sensor. The system, wherein at least one of the sports equipment includes a storage to store the sensor data wherein the sports equipment are provided with a clarification means allowing identification from which sports equipment sensor data are transmitted to the Internet server. The system, wherein the communications link between the sports equipment and the Internet server comprises a base station. The system, wherein the application is designed to assign data received from different sports equipment to different user accounts. The system, wherein the application generates output data to drive a display device to visualize sensor data. A system for interactive processing, wherein the system comprises a plurality of sports equipment, wherein each sports equipment is provided with one (1) sensor such that a set of sensor data related to the sports equipment is captured, and each sports equipment also comprises a communication device associated with sports equipment for establishing a communication link with an Internet server, wherein the Internet server is provided with an application, that is arranged to relate the data transferred from different sports equipment to one another. A system, wherein the sensor is capable of capturing at least one type of data selected from a group comprising the data, that is characteristic of the movement of sports equipment, physiological data of the user of the sports equipment, data describing the environment, and data describing the position of the sports equipment. The system, wherein the sports equipment includes a clock generating a time signal and electronic processing means associating the sensor data with the time signal.
The system, wherein the application is designed to assign data received from different sports equipment, to different user accounts, generates output data to drive a display device to visualize sensor data. The system provides a method for interactive data processing and comprising the steps of capturing sensor data that are related to a plurality of sports equipment; transferring the sensor data to an internet server and relating the sensor data received from different sports equipment to each other. The method further comprising the steps of generating a time signal and associating the time signal with the sensor data. The method comprising the step of storing the sensor data and identifying from which sports equipment the sensor data is received; comprising the step of assigning the sensor data received from different sports equipment to different user accounts. The system provides a method of displaying the received sensor data.
A wireless smart golf club is constructed to contain, or alternatively, a standard golf club is modified to contain a multiple sensor or transducer array located on the club head at the face or hitting surface. Upon impact of the head of the club with a golf ball, the impacted sensors produce detectable variances representing the magnitude and duration of the club-ball impact force and the proximate location of such contact relative to the preferred location, the “sweet spot” on the face of the club head. The variances are electronically processed into digitally coded information and remotely transmitted by an electrical communication circuit either contained within or attached to the golf club. In the case of a virtual game and therefore a virtual impact, the game implement simulates the impact based on the velocity, acceleration, and spatial orientation of the game implement itself at the point of a virtual impact. A game projectile or object can therefore be real or virtual.
Each golf club device and golf ball receptacle device according to this invention, in a preferred embodiment the transducers are or include piezo-active elements and or pressure sensors. As used herein, “piezo-active” includes piezoelectric and piezoresistive components. Piezo-active components are defined as components with the electrical properties of which, when the component is subjected to physical force, vary.
The smart golf club system uses biofeedback to create an intelligent golf training and entertainment system. The smart golf club system is a diagnostic and analysis tool used to improve a player's skills by utilizing relatively instantaneous visual cues and acoustic feedback with little or no human intervention. The smart golf club system takes the generated data and reconstructs it into a useful visual format that can be presented in a variety of ways including 3-dimensional animation.
The smart golf club system integrated circuit or circuits can be located anywhere within the club including the head and or shaft.
The smart golf club has a means via its built-in microcontroller to process, analyze, store, hitting pattern data and transmit it to the local computer and or the Internet for further analysis. In playback mode the smart golf club system memorizes the number of times each sensor was struck. This provides the golfer information about his or her hitting pattern. Using a computer algorithm, we can analyze and calculate a hitting pattern resulting in a personalized sports hitting detection system for each athlete. Hereon and heretofore the word, “smart,” such as a smart golf club, is understood to be a golf club or a game implement fitted with electronic circuitry and components comprising, but not limited to, a microcontroller, microcomputer, and or microcontroller unless otherwise stated.
The ball receptacle has an open end to receive a golf ball and contains a transducer located so as to sense the ball entering the receptacle. Upon impact with the golf ball, the sensor produces a detectable variance representing impact with the ball. The variance is electronically processed into display coded information and remotely transmitted by an electrical communication circuit. In one preferred embodiment the communication circuit is contained within the receptacle. Preferably, the communications circuit for the receptacle is a radio frequency transmitter. The receptacle can either be designed for indoor use or can be a cup in an actual green with the communication circuit housed in the cup or elsewhere.
In each of the golf club device and golf ball receptacle device according to this invention, in a preferred embodiment the transducers are or include piezo-active elements.
The golf club swing motion sensing device contains an array of uniformly distributed sensing transducers upon or proximate to the device surface. This motion sensing device may be formed as a mat, a plate, or other substantially flat surface or simply a surface from which a golf ball is hit. The transducers produce detectable varying characteristics such as capacitance representing the velocity, angle, and proximity of a golf club relative to the surface of the device. The variances are electronically processed into digitally coded information and remotely transmitted by an electrical communication circuit contained within or electronically connected to the device.
At each remote player site, wireless radio frequency equipment receives the digitally coded transmitted signals from the golf club, the golf ball receptacle, and the club swing motion sensing device. The signals are demodulated and processed into serial binary data suitable for communications to the local computer via either serial or parallel ports. As the game progresses, the computer under the control of the game software, monitors and directs the flow of communications between the players via the internet and displays the game simulations and performance information.
At each remote player site, a computer under the control of the game software, monitors and controls the sequential play of the game and interacts with the player at the site and also competing players at the other remote sites via the internet. The software system generates the game simulations for display and tracks each player's performance as the game progresses.
The above, and further features and advantages of the invention will be better understood with reference to the accompanying drawings and the following detailed description of preferred embodiment.
While the word ball is used in this disclosure, it should be understood that any kind of projectile shall suffice for the purpose of this disclosure.
As shown in
The smart golf club 20 has a head 40 and a shaft 42. As shown in
In an alternative embodiment,
In a second alternative embodiment, to retrofit a standard golf club, contact sensors 46 are part of an adapter 40 attached to an ordinary club head as seen in
A golf ball contacting any sensor 46 produces a detectable variance indicating the magnitude and duration of sensor-ball impact. The variance may be a change in resistance of a piezoresistive transducer or a voltage change in the case of a piezoelectric transducer. As shown in
A radio frequency transmitting circuit 58 receives the serial digital data from the microcontroller 56 and wirelessly transmits the information via an internal antenna 60 to a receiver 26 (
The golf ball receptacle 22 has a top 62 shaped to allow entry of a golf ball, as shown in
A golf ball entering the receptacle 60 and containing the sensor pad 65, 66 or 67 produces a detectable variance indicating the ball entry event. The variance may be a change in resistance in the case of a piezoresistive transducer (similar, but not limited to Cooper instruments LPM 562) or a voltage change in the case of a piezoelectric transducer. As illustrated in
The ball return mechanism 68 can be simple as a back plate 80 located to be engaged by a golf ball entering the receptacle 22 and supported and biased by a spring or springs 82 to eject the ball. Other known ejection devices, similar to those used in pinball machines and either mechanically or even electrically activated, can be used to improve the effect if desired.
The receptacle configuration is susceptible to much variation. The receptacle illustrated and described above is well suited to indoor use, on carpet for example. It is clear, however, that an actual cup, installed in an actual green, with real or synthetic grass, can be similarly equipped.
The golf club motion sensor plate 80 having a top motion plate 82 and a bottom motion plate 84 is diagrammatically shown in
Applying an energizing high frequency alternating electrical signal having a frequency in 1e8 range from 100 MHz to 200 MHz from an oscillator 87 to the golf club motion plate capacitive network 88 produces an electromagnetic field above the surface of each platelet 83 of the capacitive components of the motion sensor plate 80. Any object, including a golf club, passing near the surface of the energized motion plate will cause a perturbation of the electromagnetic field as illustrated by the sample possible pathways 90 across the plate in
The electrical signal from the comparative amplifier network 92 is applied to an analog to digital signal converter 94 (ADC) and the ADC digitized output signal is converted into a serial digital data stream by a multiplexer 96. This data identifies each platelet having had its field disturbed. The serial digital data can be input directly by wire from a multiplexer 96 to the computer 28 located at the site of the golf-player and golf club motion sensor plate 80, or as in the preferred embodiment, illustrated in
The computer 28, under the control of the golf system software, will analyze the serial digital club motion signal, recognize from the transmitted signals the platelets 83 over which the club head passed and display the golf club swing motion.
At each player site, a wireless radio frequency signal receiver 26 is connected to the computer 28 by either the serial (USB) or parallel computer ports, as shown in the functional block diagram,
At each remote player site, the computer 28 (
If the competitive play mode has been selected, the program generates a player participation request and sends 134 the request to the game internet server (GGC server) 34 (
The event at 133 also has the effect of indicating at 139 that it is no longer the local player's turn and enables (as indicated by line 139) the serial port listener at 132 to detect an event from the remote computer player, again via the internet.
If the single player practice mode is selected, the internet communications sequences are disabled, other software sequential operating routines continue as above described and the player's golf club stroke, ball-receptacle contact, and/or club swing motion sensor information are communicated only to the computer located at the player's site and the performance information is analyzed and displayed only at the local computer player's site.
When a game is won, lost, or terminated, the golf software system generates the appropriate output signals 156 (
As shown in
As shown in
As shown in
While preferred embodiments have been described, it will be appreciated that many variations and modifications in the system, its operation, and its various components, may be made without departure from the spirt and scope of this invention as set forth in the appended claims.
Claims
1. A system comprising a sensor, a game apparatus, a server, a gaming environment, and a network, the network comprising a communication link, a first set of processors, and a second set of processors, the server programmed to receive requests from the second set of processors, and then provide the first and second set of processors access to the gaming environment, receive transmitted data from the first set of processors to the second set of processors, and relay the data to the gaming environment, receive data from the gaming environment, and relay the data to the second set of processors, receive messages from the gaming environment, and determine if the message includes a predefined data set;
- wherein each processor of the first set of processors is coupled to a game apparatus from a set of gaming equipment items, each game apparatus comprises at least one sensor and a communication link, the communication link is configured to receive, and transmit information over the network, and or to the server.
2. The system of claim 1, each of the gaming equipment items comprising a unique identifier, the unique identifier configured to be received by the server, the server is configured to associate each unique data set transmitted by the communication link with the unique identifier.
3. The system of claim 1, the communications link comprising a base station, the base station configured to operate as a gateway to the network.
4. The system as in claim 1, wherein the predefined data set includes data from said first processor, a player identification data set, and an alert transmitted to a processor of the second set of processors based on said player identification data set, said alert comprising a message.
5. The system of claim 1, wherein the sensor is configured to capture physiological data relating to a user of the game apparatus.
6. The system of claim 4, wherein the alert alternatively further comprising an email message.
7. The system of claim 1, the second set of processors further including a mobile communication device to receive data from said first set of processors.
8. The system of claim 1, wherein said game apparatus further comprise a motion detector to detect, and transmit, motion data to said first processors.
9. The system of claim 4, wherein the predefined data set further includes data relating to a processor of the first set of processors, accessing the gaming environment, and the server programmed to match the identification number from a list associated with the processor of the first set of processors, and accessing the gaming environment with a processor of the second set of processors.
10. The system of claim 9, the alert comprising an invitation to a user of a processor of the second set of processors to participate in the gaming environment.
11. The system of claim 4, the alert further comprising payment and or billing information.
12. The system of claim 4, wherein the alert and or the message includes information relating to a change in said gaming environment.
13. The system of claim 4, wherein the alert and or the message further comprises a reminder relating to a game scheduled to occur in said gaming environment.
14. The system of claim 4, wherein the server is further programmed to receive an alert communication medium selection from a processor of the second set of processors.
15. The system of claim 8, wherein said motion detector comprises an accelerometer, to capture acceleration data of the game apparatus, and transmit the acceleration data to the first processor.
16. The system of claim 8, wherein said motion detector comprises a gyroscope, to further capture spatial orientation data information of the game apparatus and transmit the spatial orientation data to the first processor.
17. The system of claim 8, wherein said motion detector further comprises a proximity sensor, to capture proximity data of the game apparatus to an object, and or projectile, and transmit the proximity data to the first processor.
18. The system of claim 4, wherein the server is programmed to assign data received from each said game apparatus to different user accounts.
19. The system of claim 1, further comprising one or more display devices, wherein each of the one or more display device is configured to display output data associated with the game apparatus.
20. A gaming system, comprising a server, a host processor, and a network of game systems, each game system comprising:
- a motion sensing device;
- a sports implement;
- a display device;
- a processor; and
- a wireless communication link transmitter and receiver;
- said motion sensing device comprising a sensor, a first amplifier, and a first analog-to-digital converter, the sensor configured to transmit motion data to the first amplifier, the first amplifier configured to receive motion data from the sensor, and transmit the amplified data to the first analog-to-digital converter, the first analog-to-digital converter configured to receive the amplified motion data and transmit the digital motion data to the processor, the processor programmed to receive the digital motion data from the wireless communication link receiver, analyze the digital motion data received from the wireless communication link receiver, and transform the digital motion data received from the wireless communication link receiver into performance data, and or graphical data, transmit the graphic data to the display device, transmit the digital motion data to the server, and the server is configured to transfer local player events from a remote player site to another remote player site for presentation to another player.
Type: Application
Filed: Mar 6, 2020
Publication Date: Nov 5, 2020
Inventors: Wilbert Murdock (Bronx, NY), Philip Williams (Salt Point, NY)
Application Number: 16/873,252