COMPRESSOR
High power of a compressor that compresses a mixed refrigerant containing at least 1,2difluoroethylene is achieved. A compressor (100) employs an induction motor (70) as a motor that drives a compression unit (60) that compresses a mixed refrigerant containing at least 1,2difluoroethylene, and thus, high power is enabled at comparatively low costs.
Latest DAIKIN INDUSTRIES, LTD. Patents:
The present invention relates to a compressor to be used in a refrigerant cycle apparatus considering environmental protection.
BACKGROUND ARTIn recent years, from the point of view of environmental protection, a refrigerant (hereinafter referred to as GWP refrigerant) having low global warming potential (GWP) has been examined as a refrigerant to be used in an air conditioner. As the low GWP refrigerant, a mixed refrigerant containing 1,2difluoroethylene is firstly presented.
SUMMARY OF THE INVENTION Technical ProblemHowever, the number of prior arts considering from an aspect of high efficiency of an air conditioner that uses the aforementioned refrigerant is small. For example, when the aforementioned refrigerant is to be applied to an air conditioner such as that disclosed in PTL 1 (Japanese Unexamined Patent Application Publication No. 2013124848), there is a problem that how high power of a compressor is achieved.
Solution to ProblemA compressor according to a first aspect includes a compression unit that compresses a mixed refrigerant containing at least 1,2difluoroethylene and an induction motor that drives the compression unit.
Employing an induction motor, as described above, in a compressor that compresses a mixed refrigerant containing at least 1,2difluoroethylene enables high power at comparatively low costs.
A compressor according to a second aspect is the compressor according to the first aspect, in which a rotor of the induction motor has a plurality of conducting bars that are barshaped conductors and that are disposed in an annular form, and an end ring that shortcircuits the plurality of conducting bars at an end portion in an axial direction. At least the conducting bars are formed of a metal whose electric resistance is lower than electric resistance of aluminum.
In this compressor, heat generation due to current that flows through the conducting bars of the induction motor is suppressed, and thus, high power is enabled.
A compressor according to a third aspect is the compressor according to the first aspect, in which a rotor of the induction motor has a heatradiation structure.
In this compressor, a temperature increase of the rotor of the induction motor is suppressed, and thus, high power is enabled.
A compressor according to a fourth aspect is the compressor according to the third aspect, in which the rotor of the induction motor has a plurality of conducting bars that are barshaped conductors and that are disposed in an annular form, and an end ring that shortcircuits the plurality of conducting bars at an end portion in an axial direction. The heatradiation structure is formed on the end ring.
In this compressor, heat radiation properties are improved because the heatradiation structure rotates itself, and moreover, the rotation causes forced convection and suppresses an increase in the peripheral temperature, which enables high power.
A compressor according to a fifth aspect is the compressor according to the third aspect or the fourth aspect, in which the heatradiation structure is a heat sink.
In this compressor, it is possible to integrally mold the heat sink when molding the end ring of the induction motor, and thus, high power is enabled at comparatively low costs.
A compressor according to a sixth aspect is the compressor according to the first aspect, in which a cooling structure that cools a stator of the induction motor by a refrigerant is further provided.
This compressor enables high power because the induction motor is cooled.
A compressor according to a seventh aspect is the compressor according to the sixth aspect, in which the cooling structure cools the stator by the cool heat of a refrigerant that flows in a refrigerant circuit to which the compressor is connected.
A compressor according to a eighth aspect is the compressor according to any of the first through seventh aspects, wherein, the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and 2,3,3,3tetrafluoro1propene (R1234yf).
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
A compressor according to a nineth aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segments BD, CO, and OA);
the line segment AA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines.
A compressor according to a tenth aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments IA, BD, and CG);
the line segment AA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments GI, IA, BD, and CG are straight lines.
A compressor according to a eleventh aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PN is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment NK is represented by coordinates (x, 0.2421x^{2}−29.955x+931.91, −0.2421x^{2}+28.955x−831.91),
the line segment KA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments JP, BD, and CG are straight lines.
A compressor according to a twelfth aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PL is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43)
the line segment MA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments JP, LM, BD, and CG are straight lines.
A compressor according to a thirteenth aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF);
the line segment PL is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x^{2}−0.7501x+61.8, −0.0078x^{2}−0.2499x+38.2),
the line segment TP is represented by coordinates (x, 0.00672x^{2}−0.7607x+63.525, −0.00672x^{2}−0.2393x+36.475), and
the line segments LM and BF are straight lines.
A compressor according to a fourteenth aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments;
the line segment PL is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment RP is represented by coordinates (x, 0.00672x^{2}−0.7607x+63.525, −0.00672x^{2}−0.2393x+36.475), and
the line segments LQ and QR are straight lines.
A compressor according to a fifth aspect is the compressor according to the eighth aspect, wherein, when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments,
the line segment MA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x^{2}−0.7501x+61.8, −0.0078x^{2}−0.2499x+38.2),
the line segment TS is represented by coordinates (x, −0.0017x^{2}−0.7869x+70.888, −0.0017x^{2}−0.2131x+29.112), and
the line segments SM and BF are straight lines.
A compressor according to a sixth aspect is the compressor according to any of the first through seventh aspects, wherein, the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)) and trifluoroethylene (HFO1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO1132(E) based on the entire refrigerant.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a seventeenth aspect is the compressor according to any of the first through seventh aspects, wherein, the refrigerant comprises HFO1132(E) and HFO1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO1132(E) based on the entire refrigerant.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a eighteenth aspect is the compressor according to any of the first through seventh aspects, wherein, the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), 2,3,3,3tetrafluoro1propene (R1234yf), and difluoromethane (R32), wherein
when the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
point G (0.026a^{2}−1.7478a+72.0, −0.026a^{2}+0.7478a+28.0, 0.0),
point I (0.026a^{2}−1.7478a+72.0, 0.0, −0.026a^{2}+0.7478a+28.0),
point A (0.0134a^{2}−1.9681a+68.6, 0.0, −0.0134a^{2}+0.9681a+31.4),
point B (0.0, 0.0144a^{2}−1.6377a+58.7, −0.0144a^{2}+0.6377a+41.3),
point D′ (0.0, 0.0224a^{2}+0.968a+75.4, −0.0224a^{2}−1.968a+24.6), and
point C (−0.2304a^{2}−0.4062a+32.9, 0.2304a^{2}−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a^{2}−1.6013a+71.105, −0.02a^{2}+0.6013a+28.895, 0.0),
point I (0.02a^{2}−1.6013a+71.105, 0.0, −0.02a^{2}+0.6013a+28.895),
point A (0.0112a^{2}−1.9337a+68.484, 0.0, −0.0112a^{2}+0.9337a+31.516),
point B (0.0, 0.0075a^{2}−1.5156a+58.199, −0.0075a^{2}+0.5156a+41.801), and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0135a^{2}−1.4068a+69.727, −0.0135a^{2}+0.4068a+30.273, 0.0),
point I (0.0135a^{2}−1.4068a+69.727, 0.0, −0.0135a^{2}+0.4068a+30.273),
point A (0.0107a^{2}−1.9142a+68.305, 0.0, −0.0107a^{2}+0.9142a+31.695),
point B (0.0, 0.009a^{2}−1.6045a+59.318, −0.009a^{2}+0.6045a+40.682), and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0111a^{2}−1.3152a+68.986, −0.0111a^{2}+0.3152a+31.014, 0.0),
point I (0.0111a^{2}−1.3152a+68.986, 0.0, −0.0111a^{2}+0.3152a+31.014),
point A (0.0103a^{2}−1.9225a+68.793, 0.0, −0.0103a^{2}+0.9225a+31.207),
point B (0.0, 0.0046a^{2}−1.41a+57.286, −0.0046a^{2}+0.41a+42.714), and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0061a^{2}−0.9918a+63.902, −0.0061a^{2}−0.0082a+36.098, 0.0),
point I (0.0061a^{2}−0.9918a+63.902, 0.0, −0.0061a^{2}−0.0082a+36.098),
point A (0.0085a^{2}−1.8102a+67.1, 0.0, −0.0085a^{2}+0.8102a+32.9),
point B (0.0, 0.0012a^{2}−1.1659a+52.95, −0.0012a^{2}+0.1659a+47.05), and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
A compressor according to a nineteenth aspect is the compressor according to any of the first through seventh aspects, wherein, the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), 2,3,3,3tetrafluoro1propene (R1234yf), and difluoromethane (R32), wherein
when the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
point J (0.0049a^{2}−0.9645a+47.1, −0.0049a^{2}−0.0355a+52.9, 0.0),
point K′ (0.0514a^{2}−2.4353a+61.7, −0.0323a^{2}+0.4122a+5.9, −0.0191a^{2}+1.0231a+32.4),
point B (0.0, 0.0144a^{2}−1.6377a+58.7, −0.0144a^{2}+0.6377a+41.3),
point D′ (0.0, 0.0224a^{2}+0.968a+75.4, −0.0224a^{2}−1.968a+24.6), and
point C (−0.2304a^{2}−0.4062a+32.9, 0.2304a^{2}−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0243a^{2}−1.4161a+49.725, −0.0243a^{2}+0.4161a+50.275, 0.0),
point K′ (0.0341a^{2}−2.1977a+61.187, −0.0236a^{2}+0.34a+5.636, −0.0105a^{2}+0.8577a+33.177),
point B (0.0, 0.0075a^{2}−1.5156a+58.199, −0.0075a^{2}+0.5156a+41.801), and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a^{2}−1.4476a+50.184, −0.0246a^{2}+0.4476a+49.816, 0.0),
point K′ (0.0196a^{2}−1.7863a+58.515, −0.0079a^{2}−0.1136a+8.702, −0.0117a^{2}+0.8999a+32.783),
point B (0.0, 0.009a^{2}−1.6045a+59.318, −0.009a^{2}+0.6045a+40.682), and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (0.0183a^{2}−1.1399a+46.493, −0.0183a^{2}+0.1399a+53.507, 0.0),
point K′ (−0.0051a^{2}+0.0929a+25.95, 0.0, 0.0051a^{2}−1.0929a+74.05),
point A (0.0103a^{2}−1.9225a+68.793, 0.0, −0.0103a^{2}+0.9225a+31.207),
point B (0.0, 0.0046a^{2}−1.41a+57.286, −0.0046a^{2}+0.41a+42.714), and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a^{2}+1.0956a+7.13, 0.0134a^{2}−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a^{2}−1.8102a+67.1, 0.0, −0.0085a^{2}+0.8102a+32.9),
point B (0.0, 0.0012a^{2}−1.1659a+52.95, −0.0012a^{2}+0.1659a+47.05), and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
A compressor according to a twentieth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), difluoromethane(R32), and 2,3,3,3tetrafluoro1propene (R1234yf), wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI;
the line segment IJ is represented by coordinates (0.0236y^{2}−1.7616y+72.0, y, −0.0236y^{2}+0.7616y+28.0);
the line segment NE is represented by coordinates (0.012y^{2}−1.9003y+58.3, y, −0.012y^{2}+0.9003y+41.7); and
the line segments JN and EI are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a twentyfirst aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), R32, and R1234yf,
wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′ (39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM);
the line segment MM′ is represented by coordinates (0.132y^{2}−3.34y+52.6, y, −0.132y^{2}+2.34y+47.4);
the line segment M′N is represented by coordinates (0.0596y^{2}−2.2541y+48.98, y, −0.0596y^{2}+1.2541y+51.02);
the line segment VG is represented by coordinates (0.0123y^{2}−1.8033y+39.6, y, −0.0123y^{2}+0.8033y+60.4); and
the line segments NV and GM are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a twentysecond aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), R32, and R1234yf, wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments;
the line segment ON is represented by coordinates (0.0072y^{2}−0.6701y+37.512, y, −0.0072y^{2}−0.3299y+62.488);
the line segment NU is represented by coordinates (0.0083y^{2}−1.7403y+56.635, y, −0.0083y^{2}+0.7403y+43.365); and
the line segment UO is a straight line.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a twentythird aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), R32, and R1234yf,
wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments;
the line segment QR is represented by coordinates (0.0099y^{2}−1.975y+84.765, y, −0.0099y^{2}+0.975y+15.235);
the line segment RT is represented by coordinates (0.0082y^{2}−1.8683y+83.126, y, −0.0082y^{2}+0.8683y+16.874);
the line segment LK is represented by coordinates (0.0049y^{2}−0.8842y+61.488, y, −0.0049y^{2}−0.1158y+38.512);
the line segment KQ is represented by coordinates (0.0095y^{2}−1.2222y+67.676, y, −0.0095y^{2}+0.2222y+32.324); and
the line segment TL is a straight line.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a twentyfourth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), R32, and R1234yf,
wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments;
the line segment PS is represented by coordinates (0.0064y^{2}−0.7103y+40.1, y, −0.0064y^{2}−0.2897y+59.9);
the line segment ST is represented by coordinates (0.0082y^{2}−1.8683y+83.126, y, −0.0082y^{2}+0.8683y+16.874); and
the line segment TP is a straight line.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and AirConditioning Engineers (ASHRAE) is used.
A compressor according to a twentyfifth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (UFO1123), and difluoromethane (R32), wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI);
the line segment IK is represented by coordinates (0.025z^{2}−1.7429z+72.00, −0.025z^{2}+0.7429z+28.0, z),
the line segment HR is represented by coordinates (−0.3123z^{2}+4.234z+11.06, 0.3123z^{2}−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments KB′ and GI are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
A compressor according to a twentysixth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), HFO1123, and R32, wherein when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI);
the line segment IJ is represented by coordinates (0.025z^{2}−1.7429z+72.0, −0.025z^{2}+0.7429z+28.0, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
A compressor according to a twentyseventh aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), HFO1123, and R32,
wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM);
the line segment MP is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z),
the line segment HR is represented by coordinates (−0.3123z^{2}+4.234z+11.06, 0.3123z^{2}−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments PB′ and GM are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
A compressor according to a twentyeighth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), HFO1123, and R32,
wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM);
the line segment MN is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
A compressor according to a twentynineth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), HFO1123, and R32,
wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments;
the line segment ST is represented by coordinates (−0.0982z^{2}+0.9622z+40.931, 0.0982z^{2}−1.9622z+59.069, z),
the line segment TP is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z), and
the line segment PS is a straight line.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
A compressor according to a thirtieth aspect is the compressor according to any of the first through seventh aspects, wherein the refrigerant comprises HFO1132(E), HFO1123, and R32,
wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D);
the line segment DU is represented by coordinates (−3.4962z^{2}+210.71z−3146.1, 3.4962z^{2}−211.71z+3246.1, z),
the line segment UQ is represented by coordinates (0.0135z^{2}−0.9181z+44.133, −0.0135z^{2}−0.0819z+55.867, z), and
the line segments QB″ and B″D are straight lines.
In this compressor, an induction motor is employed, and thus high power at comparatively low costs can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
A refrigeration cycle apparatus according to a thirtyfirst aspect is a refrigeration cycle apparatus including any one of the compressors according to the first aspect to the thirtieth aspect.
In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and nonfluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Nonfluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oilcontaining working fluid” so as to distinguish it from the “refrigerant composition.”
In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can b e operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “dropin alternative,” “nearly dropin alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 342013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 342013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 342013 is determined to classified as be “Class 2L.”
In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 342013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
(2) Refrigerant (21) Refrigerant ComponentAny one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
(22) Use of RefrigerantThe refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
(3) Refrigerant CompositionThe refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
(31) WaterThe refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
(32) TracerA tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N_{2}O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
The following compounds are preferable as the tracer.
FC14 (tetrafluoromethane, CF_{4})
HCC40 (chloromethane, CH_{3}Cl)
HFC23 (trifluoromethane, CHF_{3})
HFC41 (fluoromethane, CH_{3}Cl)
HFC125 (pentafluoroethane, CF_{3}CHF_{2})
HFC134a (1,1,1,2tetrafluoroethane, CF_{3}CH_{2}F)
HFC134 (1,1,2,2tetrafluoroethane, CHF_{2}CHF_{2})
HFC143a (1,1,1trifluoroethane, CF_{3}CH_{3})
HFC143 (1,1,2trifluoroethane, CHF_{2}CH_{2}F)
HFC152a (1,1difluoroethane, CHF_{2}CH_{3})
HFC152 (1,2difluoroethane, CH_{2}FCH_{2}F)
HFC161 (fluoroethane, CH_{3}CH_{2}F)
HFC245fa (1,1,1,3,3pentafluoropropane, CF_{3}CH_{2}CHF_{2})
HFC236fa (1,1,1,3,3,3hexafluoropropane, CF_{3}CH_{2}CF_{3})
HFC236ea (1,1,1,2,3,3hexafluoropropane, CF_{3}CHFCHF_{2})
HFC227ea (1,1,1,2,3,3,3heptafluoropropane, CF_{3}CHFCF_{3})
HCFC22 (chlorodifluoromethane, CHClF_{2})
HCFC31 (chlorofluoromethane, CH_{2}ClF)
CFC1113 (chlorotrifluoroethylene, CF_{2}═CClF)
HFE125 (trifluoromethyldifluoromethyl ether, CF_{3}OCHF_{2})
HFE134a (trifluoromethylfluoromethyl ether, CF_{3}OCH_{2}F)
HFE143a (trifluoromethylmethyl ether, CF_{3}OCH_{3})
HFE227ea (trifluoromethyltetrafluoroethyl ether, CF_{3}OCHFCF_{3})
HFE236fa (trifluoromethyltrifluoroethyl ether, CF_{3}OCH_{2}CF_{3})
The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
(33) Ultraviolet Fluorescent DyeThe refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
(34) StabilizerThe refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
Examples of stabilizers include nitro compounds, ethers, and amines.
Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
Examples of ethers include 1,4dioxane.
Examples of amines include 2,2,3,3,3pentafluoropropylamine and diphenylamine.
Examples of stabilizers also include butylhydroxyxylene and benzotriazole.
The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
(35) Polymerization InhibitorThe refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
Examples of polymerization inhibitors include 4methoxy1naphthol, hydroquinone, hydroquinone methyl ether, dimethyltbutylphenol, 2,6ditertbutylpcresol, and benzotriazole.
The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
(4) Refrigeration OilContaining Working FluidThe refrigeration oilcontaining working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oilcontaining working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oilcontaining working fluid generally comprises 10 to 50 mass % of refrigeration oil.
(41) Refrigeration OilThe refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extremepressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
The refrigeration oilcontaining working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.
(42) Compatibilizing AgentThe refrigeration oilcontaining working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
(5) Various RefrigerantsHereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.
In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
(51) Refrigerant AThe refrigerant A according to the present disclosure is a mixed refrigerant comprising trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and 2,3,3,3tetrafluoro1propene (R1234yf).
The refrigerant A according to the present disclosure has various properties that are desirable as an R410Aalternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
The refrigerant A according to the present disclosure is a composition comprising HFO1132(E) and R1234yf, and optionally further comprising HFO1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
RequirementsPreferable refrigerant A is as follows:
When the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line CO);
the line segment AA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3,
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
When the mass % of HFO1132(E), HFO1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segment CG);
the line segment AA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments GI, IA, BD, and CG are straight lines.
When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
When the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segment CJ);
the line segment PN is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment NK is represented by coordinates (x, 0.2421x^{2}−29.955x+931.91, −0.2421x^{2}+28.955x−831.91),
the line segment KA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments JP, BD, and CG are straight lines.
When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
When the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segment CJ);
the line segment PL is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments JP, LM, BD, and CG are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m^{3 }or more.
When the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF);
the line segment PL is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x^{2}−0.7501x+61.8, −0.0078x^{2}−0.2499x+38.2),
the line segment TP is represented by coordinates (x, 0.00672x^{2}−0.7607x+63.525, −0.00672x^{2}−0.2393x+36.475), and
the line segments LM and BF are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m^{3 }or more.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments;
the line segment PL is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
the line segment RP is represented by coordinates (x, 0.00672x^{2}−0.7607x+63.525, −0.00672x^{2}−0.2393x+36.475), and
the line segments LQ and QR are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m^{3 }or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′(30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments,
the line segment MA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x^{2}−0.7501x+61.8, −0.0078x^{2}−0.2499x+38.2),
the line segment TS is represented by coordinates (x, −0.0017x^{2}−0.7869x+70.888, −0.0017x^{2}−0.2131x+29.112), and
the line segments SM and BF are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m^{3 }or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
point d (87.6, 0.0, 12.4),
point g (18.2, 55.1, 26.7),
point h (56.7, 43.3, 0.0), and
point o (100.0, 0.0, 0.0),
or on the line segments Od, dg, gh, and hO (excluding the points O and h);
the line segment dg is represented by coordinates (0.0047y^{2}−1.5177y+87.598, y, −0.0047y^{2}+0.5177y+12.402),
the line segment gh is represented by coordinates (−0.0134z^{2}−1.0825z+56.692, 0.0134z^{2}+0.0825z+43.308, z), and
the line segments hO and Od are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and il that connect the following 4 points:
point l (72.5, 10.2, 17.3),
point g (18.2, 55.1, 26.7),
point h (56.7, 43.3, 0.0), and
point i (72.5, 27.5, 0.0) or
on the line segments lg, gh, and il (excluding the points h and i);
the line segment lg is represented by coordinates (0.0047y^{2}−1.5177y+87.598, y, −0.0047y^{2}+0.5177y+12.402),
the line gh is represented by coordinates (−0.0134z^{2}−1.0825z+56.692, 0.0134z^{2}+0.0825z+43.308, z), and
the line segments hi and il are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:
point d (87.6, 0.0, 12.4),
point e (31.1, 42.9, 26.0),
point f (65.5, 34.5, 0.0), and
point O (100.0, 0.0, 0.0),
or on the line segments Od, de, and ef (excluding the points O and f);
the line segment de is represented by coordinates (0.0047y^{2}−1.5177y+87.598, y, −0.0047y^{2}+0.5177y+12.402),
the line segment ef is represented by coordinates (−0.0064z^{2}−1.1565z+65.501, 0.0064z^{2}+0.1565z+34.499, z), and
the line segments fO and Od are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum is respectively represented by x, y, and z,
coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:
point l (72.5, 10.2, 17.3),
point e (31.1, 42.9, 26.0),
point f (65.5, 34.5, 0.0), and
point i (72.5, 27.5, 0.0),
or on the line segments le, ef, and il (excluding the points f and i);
the line segment le is represented by coordinates (0.0047y^{2}−1.5177y+87.598, y, −0.0047y^{2}+0.5177y+12.402),
the line segment ef is represented by coordinates (−0.0134z^{2}−1.0825z+56.692, 0.0134z^{2}+0.0825z+43.308, z), and
the line segments fi and il are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum is respectively represented by x, y, and z,
coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:
point a (93.4, 0.0, 6.6),
point b (55.6, 26.6, 17.8),
point c (77.6, 22.4, 0.0), and
point O (100.0, 0.0, 0.0),
or on the line segments Oa, ab, and bc (excluding the points O and c);
the line segment ab is represented by coordinates (0.0052y^{2}−1.5588y+93.385, y, −0.0052y^{2}+0.5588y+6.615),
the line segment bc is represented by coordinates (−0.0032z^{2}−1.1791z+77.593, 0.0032z^{2}+0.1791z+22.407, z), and
the line segments cO and Oa are straight lines.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
The refrigerant A according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum is respectively represented by x, y, and z,
coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:
point k (72.5, 14.1, 13.4),
point b (55.6, 26.6, 17.8), and
point j (72.5, 23.2, 4.3),
or on the line segments kb, bj, and jk;
the line segment kb is represented by coordinates (0.0052y^{2}−1.5588y+93.385, y, and −0.0052y^{2}+0.5588y+6.615),
the line segment bj is represented by coordinates (−0.0032z^{2}−1.1791z+77.593, 0.0032z^{2}+0.1791z+22.407, z), and
the line segment jk is a straight line.
When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO1132(E), HFO1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO1132(E), HFO1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
The refrigerant according to the present disclosure may comprise HFO1132(E), HFO1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
Examples of Refrigerant AThe present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.
The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO1132(E), which was not stated therein, was assumed to be 1 from HFO1132a (GWP=1 or less) and HFO1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO1132(E), HFO1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
Further, the RCL of the mixture was calculated with the LFL of HFO1132(E) being 4.7 vol. %, the LFL of HFO1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 342013.
Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Degree of superheating: 5 K
Degree of subcooling: 5 K
Compressor efficiency: 70%
Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
These results indicate that under the condition that the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′(30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segment CO);
the line segment AA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3,
the line segment DC′ is represented by coordinates (x, 0.0082x^{2}−0.6671x+80.4, −0.0082x^{2}−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x^{2}−0.6034x+79.729, −0.0067x^{2}−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines, the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2),
point T (35.8, 44.9, 19.3),
point E (58.0, 42.0, 0.0) and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line EO);
the line segment AA′ is represented by coordinates (x, 0.0016x^{2}−0.9473x+57.497, −0.0016x^{2}−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x^{2}−1.0268x+58.7, −0.0029x^{2}+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x^{2}−0.7501x+61.8, −0.0078x^{2}−0.2499x+38.2), and
the line segment TE is represented by coordinates (x, 0.0067x^{2}−0.7607x+63.525, −0.0067x^{2}−0.2393x+36.475), and
the line segments BF, FO, and OA are straight lines,
the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A.
The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO1132(E), HFO1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m^{3 }or more.
The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO1132(E), HFO1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.
The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO1132(E), HFO1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.
In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.
Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 342013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
A burning velocity test was performed using the apparatus shown in
Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
Tables 35 and 36 show the results.
The results in Table 35 clearly indicate that when a mixed refrigerant of HFO1132(E), HFO1123, and R1234yf contains HFO1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.
The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO1132(E), HFO1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0)
point N (68.6, 16.3, 15.1)
point N′ (65.0, 7.7, 27.3) and
point K (61.3, 5.4, 33.3),
the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
In the diagram, the line segment PN is represented by coordinates (x, −0.1135x^{2}+12.112x−280.43, 0.1135x^{2}−13.112x+380.43),
and the line segment NK is represented by coordinates (x, 0.2421x^{2}−29.955x+931.91, −0.2421x^{2}+28.955x−831.91).
The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
(52) Refrigerant BThe refrigerant B according to the present disclosure is
a mixed refrigerant comprising trans1,2difluoroethylene (HFO1132(E)) and trifluoroethylene (HFO1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO1132(E) based on the entire refrigerant, or
a mixed refrigerant comprising HFO1132(E) and HFO1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO1132(E) based on the entire refrigerant.
The refrigerant B according to the present disclosure has various properties that are desirable as an R410Aalternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO1132(E) and/or HFO1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO1132(E) and/or HFO1123 is further suppressed, and the stability is further improved.
The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO1132(E) and HFO1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO1132(E) and HFO1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
Examples of Refrigerant BThe present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.
Mixed refrigerants were prepared by mixing HFO1132(E) and HFO1123 at mass % based on their sum shown in Tables 37 and 38.
The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO1132(E), which was not stated therein, was assumed to be 1 from HFO1132a (GWP=1 or less) and HFO1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO1132(E) and HFO1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Superheating temperature: 5 K
Subcooling temperature: 5 K
Compressor efficiency: 70%
The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 342013. The most flammable fraction was defined as WCFF.
Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.
The coefficient of performance (COP) was determined by the following formula.
COP=(refrigerating capacity or heating capacity)/power consumption
For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 342013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
A burning velocity test was performed using the apparatus shown in
The compositions each comprising 62.0 mass % to 72.0 mass % of HFO1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.
(53) Refrigerant CThe refrigerant C according to the present disclosure is a composition comprising trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), 2,3,3,3tetrafluoro1propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
RequirementsPreferable refrigerant C is as follows:
When the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
point G (0.026a^{2}−1.7478a+72.0, −0.026a^{2}+0.7478a+28.0, 0.0),
point I (0.026a^{2}−1.7478a+72.0, 0.0, −0.026a^{2}+0.7478a+28.0),
point A (0.0134a^{2}−1.9681a+68.6, 0.0, −0.0134a^{2}+0.9681a+31.4),
point B (0.0, 0.0144a^{2}−1.6377a+58.7, −0.0144a^{2}+0.6377a+41.3),
point D′ (0.0, 0.0224a^{2}+0.968a+75.4, −0.0224a^{2}−1.968a+24.6), and
point C (−0.2304a^{2}−0.4062a+32.9, 0.2304a^{2}−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a^{2}−1.6013a+71.105, −0.02a^{2}+0.6013a+28.895, 0.0),
point I (0.02a^{2}−1.6013a+71.105, 0.0, −0.02a^{2}+0.6013a+28.895),
point A (0.0112a^{2}−1.9337a+68.484, 0.0, −0.0112a^{2}+0.9337a+31.516),
point B (0.0, 0.0075a^{2}−1.5156a+58.199, −0.0075a^{2}+0.5156a+41.801) and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0135a^{2}−1.4068a+69.727, −0.0135a^{2}+0.4068a+30.273, 0.0),
point I (0.0135a^{2}−1.4068a+69.727, 0.0, −0.0135a^{2}+0.4068a+30.273),
point A (0.0107a^{2}−1.9142a+68.305, 0.0, −0.0107a^{2}+0.9142a+31.695),
point B (0.0, 0.009a^{2}−1.6045a+59.318, −0.009a^{2}+0.6045a+40.682) and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0111a^{2}−1.3152a+68.986, −0.0111a^{2}+0.3152a+31.014, 0.0),
point I (0.0111a^{2}−1.3152a+68.986, 0.0, −0.0111a^{2}+0.3152a+31.014),
point A (0.0103a^{2}−1.9225a+68.793, 0.0, −0.0103a^{2}+0.9225a+31.207),
point B (0.0, 0.0046a^{2}−1.41a+57.286, −0.0046a^{2}+0.41a+42.714) and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0061a^{2}−0.9918a+63.902, −0.0061a^{2}−0.0082a+36.098, 0.0),
point I (0.0061a^{2}−0.9918a+63.902, 0.0, −0.0061a^{2}−0.0082a+36.098),
point A (0.0085a^{2}−1.8102a+67.1, 0.0, −0.0085a^{2}+0.8102a+32.9),
point B (0.0, 0.0012a^{2}−1.1659a+52.95, −0.0012a^{2}+0.1659a+47.05) and
point W (0.0, 100.0a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
The refrigerant C according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum is respectively represented by x, y, and z,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
point J (0.0049a^{2}−0.9645a+47.1, −0.0049a^{2}−0.0355a+52.9, 0.0),
point K′ (0.0514a^{2}−2.4353a+61.7, −0.0323a^{2}+0.4122a+5.9, −0.0191a^{2}+1.0231a+32.4),
point B (0.0, 0.0144a^{2}−1.6377a+58.7, −0.0144a^{2}+0.6377a+41.3),
point D′ (0.0, 0.0224a^{2}+0.968a+75.4, −0.0224a^{2}−1.968a+24.6), and
point C (−0.2304a^{2}−0.4062a+32.9, 0.2304a^{2}−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0243a^{2}−1.4161a+49.725, −0.0243a^{2}+0.4161a+50.275, 0.0),
point K′ (0.0341a^{2}−2.1977a+61.187, −0.0236a^{2}+0.34a+5.636, −0.0105a^{2}+0.8577a+33.177),
point B (0.0, 0.0075a^{2}−1.5156a+58.199, −0.0075a^{2}+0.5156a+41.801) and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a^{2}−1.4476a+50.184, −0.0246a^{2}+0.4476a+49.816, 0.0),
point K′ (0.0196a^{2}−1.7863a+58.515, −0.0079a^{2}−0.1136a+8.702, −
0.0117a^{2}+0.8999a+32.783),
point B (0.0, 0.009a^{2}−1.6045a+59.318, −0.009a^{2}+0.6045a+40.682) and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (0.0183a^{2}−1.1399a+46.493, −0.0183a^{2}+0.1399a+53.507, 0.0),
point K′ (−0.0051a^{2}+0.0929a+25.95, 0.0, 0.0051a^{2}−1.0929a+74.05),
point A (0.0103a^{2}−1.9225a+68.793, 0.0, −0.0103a^{2}+0.9225a+31.207),
point B (0.0, 0.0046a^{2}−1.41a+57.286, −0.0046a^{2}+0.41a+42.714) and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a^{2}+1.0956a+7.13, 0.0134a^{2}−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a^{2}−1.8102a+67.1, 0.0, −0.0085a^{2}+0.8102a+32.9),
point B (0.0, 0.0012a^{2}−1.1659a+52.95, −0.0012a^{2}+0.1659a+47.05) and
point W (0.0, 100.0a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
When the refrigerant C according to the present disclosure further contains R32 in addition to HFO1132 (E), HFO1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:
point a (0.02a^{2}−2.46a+93.4, 0, −0.02a^{2}+2.46a+6.6),
point b′ (−0.008a^{2}−1.38a+56, 0.018a^{2}−0.53a+26.3, −0.01a^{2}+1.91a+17.7),
point c (−0.016a^{2}+1.02a+77.6, 0.016a^{2}−1.02a+22.4, 0), and
point o (100.0a, 0.0, 0.0)
or on the straight lines oa, ab′, and b′c (excluding point o and point c);
if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
point a (0.0244a^{2}−2.5695a+94.056, 0, −0.0244a^{2}+2.5695a+5.944),
point b′ (0.1161a^{2}−1.9959a+59.749, 0.014a^{2}−0.3399a+24.8, −0.1301a^{2}+2.3358a+15.451),
point c (−0.0161a^{2}+1.02a+77.6, 0.0161a^{2}−1.02a+22.4, 0), and
point o (100.0a, 0.0, 0.0),
or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
point a (0.0161a^{2}−2.3535a+92.742, 0, −0.0161a^{2}+2.3535a+7.258),
point b′ (−0.0435a^{2}−0.0435a+50.406, 0.0304a^{2}+1.8991a−0.0661, 0.0739a^{2}−1.8556a+49.6601),
point c (−0.0161a^{2}+0.9959a+77.851, 0.0161a^{2}−0.9959a+22.149, 0), and
point o (100.0a, 0.0, 0.0),
or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO1132(E), HFO1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO1132(E), HFO1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
The refrigerant C according to the present disclosure may comprise HFO1132(E), HFO1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
Examples of Refrigerant CThe present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.
Mixed refrigerants were prepared by mixing HFO1132(E), HFO1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.
The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO1132(E), which was not stated therein, was assumed to be 1 from HFO1132a (GWP=1 or less) and HFO1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO1132(E) and HFO1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.
Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Superheating temperature: 5 K
Subcooling temperature: 5 K
Compressor efficiency: 70%
Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.
The coefficient of performance (COP) was determined by the following formula.
COP=(refrigerating capacity or heating capacity)/power consumption
The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:
When the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass %, a straight line connecting a point (0.0, 100.0a, 0.0) and a point (0.0, 0.0, 100.0a) is the base, and the point (0.0, 100.0a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a^{2}−1.9681a+68.6, 0.0, −0.0134a^{2}+0.9681a+31.4) and point B (0.0, 0.0144a^{2}−1.6377a+58.7, −0.0144a^{2}+0.6377a+41.3);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a^{2}−1.9337a+68.484, 0.0, −0.0112a^{2}+0.9337a+31.516) and point B (0.0, 0.0075a^{2}−1.5156a+58.199, −0.0075a^{2}+0.5156a+41.801);
if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a^{2}−1.9142a+68.305, 0.0, −0.0107a^{2}+0.9142a+31.695) and point B (0.0, 0.009a^{2}−1.6045a+59.318, −0.009a^{2}+0.6045a+40.682);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a^{2}−1.9225a+68.793, 0.0, −0.0103a^{2}+0.9225a+31.207) and point B (0.0, 0.0046a^{2}−1.41a+57.286, −0.0046a^{2}+0.41a+42.714); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a^{2}−1.8102a+67.1, 0.0, −0.0085a^{2}+0.8102a+32.9) and point B (0.0, 0.0012a^{2}−1.1659a+52.95, −0.0012a^{2}+0.1659a+47.05).
Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in
Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a^{2}+0.968a+75.4, −0.0224a^{2}−1.968a+24.6) and point C (−0.2304a^{2}−0.4062a+32.9, 0.2304a^{2}−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.
In
The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 342013. The most flammable fraction was defined as WCFF.
For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 342013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
A burning velocity test was performed using the apparatus shown in
The results are shown in Tables 97 to 104.
The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:
When the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO1132(E), HFO1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % and a straight line connecting a point (0.0, 100.0a, 0.0) and a point (0.0, 0.0, 100.0a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a^{2}−1.7478a+72.0, −0.026a^{2}+0.7478a+28.0, 0.0) and point I (0.026a^{2}−1.7478a+72.0, 0.0, −0.026a^{2}+0.7478a+28.0);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a^{2}−1.6013a+71.105, −0.02a^{2}+0.6013a+28.895, 0.0) and point I (0.02a^{2}−1.6013a+71.105, 0.0, −0.02a^{2}+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a^{2}−1.4068a+69.727, −0.0135a^{2}+0.4068a+30.273, 0.0) and point I (0.0135a^{2}−1.4068a+69.727, 0.0, −0.0135a^{2}+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a^{2}−1.3152a+68.986, −0.0111a^{2}+0.3152a+31.014, 0.0) and point I (0.0111a^{2}−1.3152a+68.986, 0.0, −0.0111a^{2}+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a^{2}−0.9918a+63.902, −0.0061a^{2}−0.0082a+36.098, 0.0) and point I (0.0061a^{2}−0.9918a+63.902, 0.0, −0.0061a^{2}−0.0082a+36.098).
Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:
When the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO1132(E), HFO1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % and a straight line connecting a point (0.0, 100.0a, 0.0) and a point (0.0, 0.0, 100.0a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a^{2}−0.9645a+47.1, −0.0049a^{2}−0.0355a+52.9, 0.0) and point K′(0.0514a^{2}−2.4353a+61.7, −0.0323a^{2}+0.4122a+5.9, −0.0191a^{2}+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a^{2}−1.4161a+49.725, −0.0243a^{2}+0.4161a+50.275, 0.0) and point K′(0.0341a^{2}−2.1977a+61.187, −0.0236a^{2}+0.34a+5.636, −0.0105a^{2}+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a^{2}−1.4476a+50.184, −0.0246a^{2}+0.4476a+49.816, 0.0) and point K′ (0.0196a^{2}−1.7863a+58.515, −0.0079a^{2}−0.1136a+8.702, −0.0117a^{2}+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a^{2}−1.1399a+46.493, −0.0183a^{2}+0.1399a+53.507, 0.0) and point K′ (−0.0051a^{2}+0.0929a+25.95, 0.0, 0.0051a^{2}−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a^{2}+1.0956a+7.13, 0.0134a^{2}−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).
Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in
Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
Point A is a point where the content of HFO1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
Point B is a point where the content of HFO1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).
Point D′ is a point where the content of HFO1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).
Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).
The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans1,2difluoroethylene (HFO1132(E)), difluoromethane (R32), and 2,3,3,3tetrafluoro1propene (R1234yf).
The refrigerant D according to the present disclosure has various properties that are desirable as an R410Aalternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI);
the line segment IJ is represented by coordinates (0.0236y^{2}−1.7616y+72.0, y, −0.0236y^{2}+0.7616y+28.0);
the line segment NE is represented by coordinates (0.012y^{2}−1.9003y+58.3, y, −0.012y^{2}+0.9003y+41.7); and
the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′ (39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM);
the line segment MM′ is represented by coordinates (0.132y^{2}−3.34y+52.6, y, −0.132y^{2}+2.34y+47.4);
the line segment M′N is represented by coordinates (0.0596y^{2}−2.2541y+48.98, y, −0.0596y^{2}+1.2541y+51.02);
the line segment VG is represented by coordinates (0.0123y^{2}−1.8033y+39.6, y, −0.0123y^{2}+0.8033y+60.4); and
the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments;
the line segment ON is represented by coordinates (0.0072y^{2}−0.6701y+37.512, y, −0.0072y^{2}−0.3299y+62.488);
the line segment NU is represented by coordinates (0.0083y^{2}−1.7403y+56.635, y, −0.0083y^{2}+0.7403y+43.365); and
the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments;
the line segment QR is represented by coordinates (0.0099y^{2}−1.975y+84.765, y, −0.0099y^{2}+0.975y+15.235);
the line segment RT is represented by coordinates (0.0082y^{2}−1.8683y+83.126, y, −0.0082y^{2}+0.8683y+16.874);
the line segment LK is represented by coordinates (0.0049y^{2}−0.8842y+61.488, y, −0.0049y^{2}−0.1158y+38.512);
the line segment KQ is represented by coordinates (0.0095y^{2}−1.2222y+67.676, y, −0.0095y^{2}+0.2222y+32.324); and
the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments;
the line segment PS is represented by coordinates (0.0064y^{2}−0.7103y+40.1, y, −0.0064y^{2}−0.2897y+59.9);
the line segment ST is represented by coordinates (0.0082y^{2}−1.8683y+83.126, y, −0.0082y^{2}+0.8683y+16.874); and
the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:
point a (71.1, 0.0, 28.9),
point c (36.5, 18.2, 45.3),
point f (47.6, 18.3, 34.1), and
point d (72.0, 0.0, 28.0),
or on these line segments;
the line segment ac is represented by coordinates (0.0181y^{2}−2.2288y+71.096, y, −0.0181y^{2}+1.2288y+28.904);
the line segment fd is represented by coordinates (0.02y^{2}−1.7y+72, y, −0.02y^{2}+0.7y+28); and
the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:
point a (71.1, 0.0, 28.9),
point b (42.6, 14.5, 42.9),
point e (51.4, 14.6, 34.0), and
point d (72.0, 0.0, 28.0),
or on these line segments;
the line segment ab is represented by coordinates (0.0181y^{2}−2.2288y+71.096, y, −0.0181y^{2}+1.2288y+28.904);
the line segment ed is represented by coordinates (0.02y^{2}−1.7y+72, y, −0.02y^{2}+0.7y+28); and
the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:
point g (77.5, 6.9, 15.6),
point i (55.1, 18.3, 26.6), and
point j (77.5. 18.4, 4.1),
or on these line segments;
the line segment gi is represented by coordinates (0.02y^{2}−2.4583y+93.396, y, −0.02y^{2}+1.4583y+6.604); and
the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
The refrigerant D according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:
point g (77.5, 6.9, 15.6),
point h (61.8, 14.6, 23.6), and
point k (77.5, 14.6, 7.9),
or on these line segments;
the line segment gh is represented by coordinates (0.02y^{2}−2.4583y+93.396, y, −0.02y^{2}+1.4583y+6.604); and
the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
Examples of Refrigerant DThe present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.
The composition of each mixed refrigerant of HFO1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 342013. The most flammable fraction was defined as WCFF.
A burning velocity test was performed using the apparatus shown in
The results indicate that under the condition that the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in
The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in
Mixed refrigerants were prepared by mixing HFO1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.
Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Degree of superheating: 5 K
Degree of subcooling: 5 K
Compressor efficiency: 70%
Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
The results also indicate that under the condition that the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI),
the line segment IJ is represented by coordinates (0.0236y^{2}−1.7616y+72.0, y, −0.0236y^{2}+0.7616y+28.0),
the line segment NE is represented by coordinates (0.012y^{2}−1.9003y+58.3, y, −0.012y^{2}+0.9003y+41.7), and
the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
The results also indicate that under the condition that the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′ (39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM),
the line segment MM′ is represented by coordinates (0.132y^{2}−3.34y+52.6, y, −0.132y^{2}+2.34y+47.4),
the line segment M′N is represented by coordinates (0.0596y^{2}−2.2541y+48.98, y, −0.0596y^{2}+1.2541y+51.02),
the line segment VG is represented by coordinates (0.0123y^{2}−1.8033y+39.6, y, −0.0123y^{2}+0.8033y+60.4), and
the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
The results also indicate that under the condition that the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments,
the line segment ON is represented by coordinates (0.0072y^{2}−0.6701y+37.512, y, −0.0072y^{2}−0.3299y+62.488),
the line segment NU is represented by coordinates (0.0083y^{2}−1.7403y+56.635, y, −0.0083y^{2}+0.7403y+43.365), and
the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
The results also indicate that under the condition that the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments,
the line segment QR is represented by coordinates (0.0099y^{2}−1.975y+84.765, y, −0.0099y^{2}+0.975y+15.235),
the line segment RT is represented by coordinates (0.0082y^{2}−1.8683y+83.126, y, −0.0082y^{2}+0.8683y+16.874),
the line segment LK is represented by coordinates (0.0049y^{2}−0.8842y+61.488, y, −0.0049y^{2}−0.1158y+38.512),
the line segment KQ is represented by coordinates (0.0095y^{2}−1.2222y+67.676, y, −0.0095y^{2}+0.2222y+32.324), and
the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
The results further indicate that under the condition that the mass % of HFO1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments,
the line segment PS is represented by coordinates (0.0064y^{2}−0.7103y+40.1, y, −0.0064y^{2}−0.2897y+59.9),
the line segment ST is represented by coordinates (0.0082y^{2}−1.8683y+83.126, y, −0.0082y^{2}+0.8683y+16.874), and
the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
(55) Refrigerant EThe refrigerant E according to the present disclosure is a mixed refrigerant comprising trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32).
The refrigerant E according to the present disclosure has various properties that are desirable as an R410Aalternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI);
the line segment IK is represented by coordinates (0.025z^{2}−1.7429z+72.00, −0.025z^{2}+0.7429z+28.0, z),
the line segment HR is represented by coordinates (−0.3123z^{2}+4.234z+11.06, 0.3123z^{2}−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI);
the line segment IJ is represented by coordinates (0.025z^{2}−1.7429z+72.0, −0.025z^{2}+0.7429z+28.0, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM);
the line segment MP is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z),
the line segment HR is represented by coordinates (−0.3123z^{2}+4.234z+11.06, 0.3123z^{2}−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and
the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM);
the line segment MN is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z),
the line segment RG is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z),
the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments;
the line segment ST is represented by coordinates (−0.0982z^{2}+0.9622z+40.931, 0.0982z^{2}−1.9622z+59.069, z),
the line segment TP is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z), and
the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D);
the line segment DU is represented by coordinates (−3.4962z^{2}+210.71z−3146.1, 3.4962z^{2}−211.71z+3246.1, z),
the line segment UQ is represented by coordinates (0.0135z^{2}−0.9181z+44.133, −0.0135z^{2}−0.0819z+55.867, z), and
the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:
point O (100.0, 0.0, 0.0),
point c′ (56.7, 43.3, 0.0),
point d′ (52.2, 38.3, 9.5),
point e′ (41.8, 39.8, 18.4), and
point a′ (81.6, 0.0, 18.4),
or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
the line segment c′d′ is represented by coordinates (−0.0297z^{2}−0.1915z+56.7, 0.0297z^{2}+1.1915z+43.3, z),
the line segment d′e′ is represented by coordinates (−0.0535z^{2}+0.3229z+53.957, 0.0535z^{2}+0.6771z+46.043, z), and
the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:
point O (100.0, 0.0, 0.0),
point c (77.7, 22.3, 0.0),
point d (76.3, 14.2, 9.5),
point e (72.2, 9.4, 18.4), and
point a′ (81.6, 0.0, 18.4),
or on the line segments cd, de, and ea′ (excluding the points c and a′);
the line segment cde is represented by coordinates (−0.017z^{2}+0.0148z+77.684, 0.017z^{2}+0.9852z+22.316, z), and
the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:
point O (100.0, 0.0, 0.0),
point c′ (56.7, 43.3, 0.0),
point d′ (52.2, 38.3, 9.5), and
point a (90.5, 0.0, 9.5),
or on the line segments c′d′ and d′a (excluding the points c′ and a);
the line segment c′d′ is represented by coordinates (−0.0297z^{2}−0.1915z+56.7, 0.0297z^{2}+1.1915z+43.3, z), and
the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
The refrigerant E according to the present disclosure is preferably a refrigerant wherein
when the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:
point O (100.0, 0.0, 0.0),
point c (77.7, 22.3, 0.0),
point d (76.3, 14.2, 9.5), and
point a (90.5, 0.0, 9.5),
or on the line segments cd and da (excluding the points c and a);
the line segment cd is represented by coordinates (−0.017z^{2}+0.0148z+77.684, 0.017z^{2}+0.9852z+22.316, z), and
the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO1132(E), HFO1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO1132(E), HFO1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
Examples of Refrigerant EThe present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.
Mixed refrigerants were prepared by mixing HFO1132(E), HFO1123, and R32 at mass % based on their sum shown in Tables 145 and 146.
The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 342013. The most flammable fraction was defined as WCFF.
For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 342013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
A burning velocity test was performed using the apparatus shown in
Tables 145 and 146 show the results.
The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO1132(E), HFO1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4), and
point L (35.5, 27.5, 37.0);
the line segment IK is represented by coordinates
(0.025z^{2}−1.7429z+72.00, −0.025z^{2}+0.7429z+28.00, z), and
the line segment KL is represented by coordinates
(0.0098z^{2}−1.238z+67.852, −0.0098z^{2}+0.238z+32.148, z),
it can be determined that the refrigerant has WCF lower flammability.
For the points on the line segment IK, an approximate curve (x=0.025z^{2}−1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the leastsquare method to determine coordinates (x=0.025z^{2}−1.7429z+72.00, y=100−z−x=−0.00922z^{2}+0.2114z+32.443, z).
Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the leastsquare method to determine coordinates.
The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO1132(E), HFO1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4), and
point Q (28.6, 34.4, 37.0),
it can be determined that the refrigerant has ASHRAE lower flammability.
In the above, the line segment MP is represented by coordinates (0.0083z^{2}−0.984z+47.1, −0.0083z^{2}−0.016z+52.9, z), and the line segment PQ is represented by coordinates
(0.0135z^{2}−0.9181z+44.133, −0.0135z^{2}−0.0819z+55.867, z).
For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the leastsquare method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the leastsquare method to determine coordinates.
The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO1132(E), which was not stated therein, was assumed to be 1 from HFO1132a (GWP=1 or less) and HFO1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO1132(E) and HFO1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.
Evaporating temperature: 5° C.
Condensation temperature: 45° C.
Degree of superheating: 5K
Degree of subcooling: 5K
Compressor efficiency: 70%
Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
The above results indicate that under the condition that the mass % of HFO1132(E), HFO1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:
point O (100.0, 0.0, 0.0),
point A″ (63.0, 0.0, 37.0),
point B″ (0.0, 63.0, 37.0), and
point (0.0, 100.0, 0.0),
or on these line segments,
the refrigerant has a GWP of 250 or less.
The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
point O (100.0, 0.0, 0.0),
point A′ (81.6, 0.0, 18.4),
point B′ (0.0, 81.6, 18.4), and
point (0.0, 100.0, 0.0),
or on these line segments,
the refrigerant has a GWP of 125 or less.
The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
point O (100.0, 0.0, 0.0),
point A (90.5, 0.0, 9.5),
point B (0.0, 90.5, 9.5), and
point (0.0, 100.0, 0.0),
or on these line segments,
the refrigerant has a GWP of 65 or less.
The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
point C (50.0, 31.6, 18.4),
point U (28.7, 41.2, 30.1), and
point D (52.2, 38.3, 9.5),
or on these line segments,
the refrigerant has a COP ratio of 96% or more relative to that of R410A.
In the above, the line segment CU is represented by coordinates (−0.0538z^{2}+0.7888z+53.701, 0.0538z^{2}−1.7888z+46.299, z), and the line segment UD is represented by coordinates
(−3.4962z^{2}+210.71z−3146.1, 3.4962z^{2}−211.71z+3246.1, z).
The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the leastsquare method.
The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the leastsquare method.
The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
point E (55.2, 44.8, 0.0),
point T (34.8, 51.0, 14.2), and
point F (0.0, 76.7, 23.3),
or on these line segments,
the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
In the above, the line segment ET is represented by coordinates (−0.0547z^{2}−0.5327z+53.4, 0.0547z^{2}−0.4673z+46.6, z), and the line segment TF is represented by coordinates
(−0.0982z^{2}+0.9622z+40.931, 0.0982z^{2}−1.9622z+59.069, z).
The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the leastsquare method.
The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the leastsquare method.
The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
point G (0.0, 76.7, 23.3),
point R (21.0, 69.5, 9.5), and
point H (0.0, 85.9, 14.1),
or on these line segments,
the refrigerant has a COP ratio of 93% or more relative to that of R410A.
In the above, the line segment GR is represented by coordinates (−0.0491z^{2}−1.1544z+38.5, 0.0491z^{2}+0.1544z+61.5, z), and the line segment RH is represented by coordinates
(−0.3123 z^{2}+4.234z+11.06, 0.3123 z^{2}−5.234z+88.94, z).
The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the leastsquare method.
The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the leastsquare method.
In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO1132(E) and HFO1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.
(6) Configuration of Air Conditioner 1Referring to
In the air conditioner 1, devices, such as an accumulator 15, the compressor 100, a fourway switching valve 16, an outdoor heat exchanger 17, an expansion valve 18, and an indoor heat exchanger 13, are connected together by pipes, thereby constituting a refrigerant circuit 11.
In the present embodiment, a refrigerant for performing a vapor compression refrigeration cycle is packed in the refrigerant circuit 11. The refrigerant is a mixed refrigerant containing 1,2difluoroethylene, and, as the refrigerant, any one of the aforementioned refrigerants A to E is usable. A refrigerating machine oil is also packed together with the mixed refrigerant in the refrigerant circuit 11.
(61) Indoor Unit 2The indoor heat exchanger 13 to be loaded in the indoor unit 2 is a crossfin type finandtube heat exchanger constituted by a heat transfer tube and a large number of heat transfer fins. The indoor heat exchanger 13 is connected at the liquid side thereof to the liquidrefrigerant connection pipe 4 and connected at the gas side thereof to the gasrefrigerant connection pipe 5, and the indoor heat exchanger 13 functions as a refrigerant evaporator during cooling operation.
(62) Outdoor Unit 3The outdoor unit 3 is loaded with the accumulator 15, the compressor 100, the outdoor heat exchanger 17, and the expansion valve 18.
(621) Outdoor Heat Exchanger 17The outdoor heat exchanger 17 is a crossfin type finandtube heat exchanger constituted by a heat transfer tube and a large number of heat transfer fins. The outdoor heat exchanger 17 is connected at one end thereof to the side of a discharge pipe 24 in which a refrigerant discharged from the compressor 100 flows and connected at the other end thereof to the side of the liquidrefrigerant connection pipe 4. The outdoor heat exchanger 17 functions as a condenser for a gas refrigerant supplied from the compressor 100 through the discharge pipe 24.
(622) Expansion Valve 18The expansion valve 18 is disposed in a pipe that connects the outdoor heat exchanger 17 and the liquidrefrigerant connection pipe 4 to each other. The expansion valve 18 is an openingdegree adjustable electric valve for adjusting the pressure and the flow rate of a refrigerant that flows in the pipe.
(623) Accumulator 15The accumulator 15 is disposed in a pipe that connects the gasrefrigerant connection pipe 5 and a suction pipe 23 of the compressor 100 to each other. The accumulator 15 separates, into a gas phase and a liquid phase, a refrigerant that flows from the indoor heat exchanger 13 toward the suction pipe 23 through the gasrefrigerant connection pipe 5 to prevent a liquid refrigerant from being supplied into the compressor 100. The compressor 100 is supplied with a gasphase refrigerant accumulated in an upper space of the accumulator 15.
(624) Compressor 100The fourway switching valve 16 has first to fourth ports. The fourway switching valve 16 is connected at the first port thereof to the discharge side of the compressor 100, connected at the second port thereof to the suction side of the compressor 100, connected at the third port thereof to the gasside end portion of the outdoor heat exchanger 17, and connected at the fourth port thereof to a gasside shutoff valve Vg.
The fourway switching valve 16 is switchable between a first state (the state indicated in the solid line in
A compressor 100 constitutes a refrigerant circuit in cooperation with an evaporator, a condenser, an expansion mechanism, and the like and plays a role of compressing a gas refrigerant in the refrigerant circuit. As illustrated in
The casing 20 has a substantially cylindrical cylinder member 21, a bowlshaped upper cover 22a welded to an upper end portion of the cylinder member 21 in an airtight manner, and a bowlshaped lower cover 22b welded to a lower end portion of the cylinder member 21 in an airtight manner.
The casing 20 accommodates, mainly, the compression mechanism 60 that compresses a gas refrigerant and the motor 70 that is disposed on the lower side of the compression mechanism 60. The compression mechanism 60 and the motor 70 are coupled to each other by a crank shaft 80 disposed to extend in an updown direction in the casing 20. A gap space 68 is generated between the compression mechanism 60 and the motor 70.
An oil reservoir space So is formed in a lower portion of the casing 20. The oil reservoir space So stores a refrigerating machine oil O for lubricating the compression mechanism 60 and the like. The refrigerating machine oil O is the refrigerating machine oil described in the section of “(41) Refrigerating Machine Oil”.
In the inner portion of the crank shaft 80, an oil supply path 83 for supplying the refrigerating machine oil O to the compression mechanism 60 and the like is formed. The lower end of a main shaft 82 of the crank shaft 80 is positioned in the oil reservoir space So formed in the lower portion of the casing 20. The refrigerating machine oil O in the oil reservoir space So is supplied to the compression mechanism 60 and the like through the oil supply path 83.
(72) Motor 70The motor 70 is an induction motor and constituted by an annular stator 72 fixed to the inner wall surface of the casing 20, and a rotor 71 rotatably accommodated inside the stator 72 with a slight gap (air gap).
The motor 70 is disposed such that the upper end of a coil end of a coil 727 formed on the upper side of the stator 72 is at a height position substantially identical to the height position of the lower end of a bearing portion 61b of a housing 61.
A copper wire is wound around each tooth portion of the stator 72, and coil ends of the coil 727 are formed on the upper side and the lower side.
The rotor 71 is drivecoupled to a movable scroll 40 of the compression mechanism 60 via the crank shaft 80 disposed at the axial center of the cylinder member 21 so as to extend in the updown direction. In addition, a guide plate 58 that guides a refrigerant that has flowed out through an outlet 49 of a connection passage 46 to a motor cooling passage 55 is formed in the gap space 68.
The stator 72 is a socalled distributedwinding stator and has a barrel portion 725, which is an iron core, and the coil 727 wound around the barrel portion 725. A narrow portion 727a, which is a narrow portion of the coil 727, recessed inward more than the outer circumferential surface of the barrel portion 725 is formed on each of an upper portion and a lower portion of the barrel portion 725.
Details of the motor 70 will be described in the section of “(9) Configuration of Motor 70”.
(73) Compression Mechanism 60As illustrated in
As illustrated in
A discharge hole 341 in communication with a compression chamber Sc and an extended concave portion 342 in communication with the discharge hole 341 are formed in the end plate 34. The discharge hole 341 is formed in a center portion of the end plate 34 to extend in the updown direction.
The extended concave portion 342 is constituted by a concave portion extending horizontally on the upper surface of the end plate 34. A cover body 344 is fastened and fixed by a bolt 344a to the upper surface of the fixed scroll 30 so as to close the extended concave portion 342. As a result of the extended concave portion 342 being covered by the cover body 344, a muffler space 345 constituted by an expansion chamber that muffles an operation sound of the compression mechanism 60 is formed.
(732) Movable Scroll 40As illustrated in
The movable scroll 40 is a movable scroll of an outer drive. In other words, the movable scroll 40 has the boss portion 43 that is fitted on the outer side of the crank shaft 80.
The movable scroll 40 is supported by the housing 61 by the oldham ring 39 being filled into a groove portion formed in the end plate 41. The upper end of the crank shaft 80 is fitted into the boss portion 43. The movable scroll 40 revolves in the housing 61, without being rotated by the rotation of the crank shaft 80, by being thus incorporated in the compression mechanism 60. The lap 42 of the movable scroll 40 is engaged with the lap 33 of the fixed scroll 30, and the compression chamber Sc is formed between contact parts of the two laps 33 and 42. In the compression chamber Sc, the capacity of a gap between the two laps 33 and 42 contracts toward the center in response to the revolution of the movable scroll 40. It is thereby possible to compress a gas refrigerant.
(733) Housing 61The housing 61 is pressfitted and fixed, at the entirety of the outer circumferential surface thereof in the circumferential direction, to the cylinder member 21. In other words, the cylinder member 21 and the housing 61 are in close contact with each other over the whole circumference in an airtight manner. Consequently, the inner portion of the casing 20 is divided into a highpressure space on the lower side of the housing 61 and a lowpressure space on the upper side of the housing 61. In the housing 61, a housing concave portion 61a recessed at the center of the upper surface thereof and the bearing portion 61b extending from the center of the lower surface thereof on the lower side are formed. The bearing portion 61b has a bearing hole 63 formed to pass therethrough in the updown direction, and the crank shaft 80 is rotatably fitted into the bearing portion 61b through the bearing hole 63.
(74) Oldham Ring 39The oldham ring 39 is a member for preventing the rotation movement of the movable scroll 40 and is fitted into an oldham groove (not illustrated) formed in the housing 61. The oldham groove is an elongatedcircular groove and is disposed at positions opposite each other in the housing 61.
(75) Lower Bearing 90The lower bearing 90 is disposed in a lower space on the lower side of the motor 70. The lower bearing 90 is fixed to the cylinder member 21 while constituting the lowerendside bearing of the crank shaft 80 and supports the crank shaft 80.
(76) Suction Pipe 23The suction pipe 23 is a pipe for guiding a refrigerant of the refrigerant circuit to the compression mechanism 60 and is fitted into the upper cover 22a of the casing 20 in an airtight manner. The suction pipe 23 passes through a lowpressure space Sl in the updown direction with an inner end portion thereof fitted into the fixed scroll 30.
(77) Discharge Pipe 24The discharge pipe 24 is a pipe for discharging a refrigerant in the casing 20 to the outside of the casing 20 and is fitted into the cylinder member 21 of the casing 20 in an airtight manner. The discharge pipe 24 has an inner end portion 36 that has a cylindrical shape extending in the updown direction and that is fixed to a lower end portion of the housing 61. An inner end opening, that is, an inflow port of the discharge pipe 24 opens downward.
(8) Operation of Compressor 100When the motor 70 is driven, the crank shaft 80 rotates, and the movable scroll 40 performs revolving operation without rotating. A lowpressure gas refrigerant is then sucked from the peripheral side of the compression chamber Sc through the suction pipe 23 into the compression chamber Sc and compressed in response to a change in the capacity of the compression chamber Sc, thereby becoming a highpressure gas refrigerant.
The highpressure gas refrigerant is discharged from a center portion of the compression chamber Sc by passing through the discharge hole 341 into the muffler space 345, then flows out into the gap space 68 through the connection passage 46, a scrollside passage 47, a housingside passage 48, and the outlet 49, and flows downward between the guide plate 58 and the inner surface of the cylinder member 21.
When the gas refrigerant flows downward between the guide plate 58 and the inner surface of the cylinder member 21, a portion of the gas refrigerant branches to flow between the guide plate 58 and the motor 70 in the circumferential direction. At this time, a lubrication oil mixed in the gas refrigerant is separated.
The other portion of the branched gas refrigerant flows downward in the motor cooling passage 55 and, after flowing into a motor lower space, turns and flows upward in an airgap passage between the stator 72 and the rotor 71 or in the motor cooling passage 55 on a side (left side in
After that, the gas refrigerant that has passed the guide plate 58 and the gas refrigerant that has flowed in the airgap passage or in the motor cooling passage 55 merge together in the gap space 68, flow into the discharge pipe 24 from the inner end portion 36 of the discharge pipe 24, and are discharged to the outside of the casing 20.
After circulating in the refrigerant circuit, the gas refrigerant discharged to the outside of the casing 20 is sucked through the suction pipe 23 and compressed again by the compression mechanism 60.
(9) Configuration of Motor 70In
The stator 72 is provided with the barrel portion 725 and a plurality of tooth portions 726. The barrel portion 725 has a substantially cylindrical shape having an inner circumferential diameter larger than the outer circumferential diameter of the rotor 71. The barrel portion 725 is formed by machining each of thin electromagnetic steel plates having a thickness of 0.05 mm or more and 0.5 mm or less into a predetermined shape and laminating a predetermined number of the electromagnetic steel plates.
The plurality of tooth portions 726 project on the inner circumferential part of the barrel portion 725 in a form of being positioned at substantially equal intervals in the circumferential direction thereof. Each of the tooth portions 726 extend from the inner circumferential part of the barrel portion 725 toward the center in the radial direction of a circle centered on the axis and faces the rotor 71 with a predetermined gap.
The tooth portions 726 are magnetically coupled on the outer circumferential side via the barrel portion 725. The coil 727 is wound, as a coil, around each of the tooth portions 726 (only one of the coils 727 is illustrated in
The rotor 71 and the stator 72 are incorporated in the casing 20 and used as a rotary electric machine.
(92) Rotor 71The rotor 71 is a basketshaped rotor. The rotor 71 has a substantially cylindrical external shape and has a center axis along which the main shaft 82 of the crank shaft 80 is coupled and fixed. The rotor 71 has a rotor core 710, a plurality of conducting bars 716, and an end ring 717.
(921) Rotor Core 710The rotor core 710 is formed of a magnetic material into a substantially cylindrical shape. The rotor core 710 is formed by machining each of thin electromagnetic steel plates having a thickness of 0.05 mm or more and 0.5 mm or less into a predetermined shape and laminating, as illustrated in
The electromagnetic steel plates are desirably a plurality of electromagnetic steel plates each having a tensile strength of 400 MPa or more to improve durability of the rotor during highspeed rotation. As illustrated in
In each one of electromagnetic steel plates 711, a [hole having a planar shape identical to that of the shaft insertion hole 719] is formed at the center thereof, and in addition, [holes each having a planar shape identical to those of the conductingbar formation holes 718] are provided at predetermined intervals. As a result of the electromagnetic steel plates 711 being laminated in a state in which the [holes each having the planar shape identical to those of the conductingbar formation holes 718] are displaced from each other by a predetermined angle, the conductingbar formation holes 718 and the shaft insertion hole 719 are formed. The conductingbar formation holes 718 are holes for molding the conducting bars 716 in the rotor core 710. Note that
The shaft insertion hole 719 is a hole for fixing the main shaft 82 (refer to
The conducting bars 716 packed in the conductingbar formation holes 718 and the end ring 717 that holds the rotor core 710 from both ends are molded integrally. For example, when aluminum or an aluminum alloy is employed as a conductor, the conducting bars 716 and the end ring 717 are integrally molded by, after setting the rotor core 710 in an aluminum diecasting die, pressfitting the aluminum or the aluminum alloy that has melted into the die.
Consequently, the basketshaped rotor 71 having the plurality of conducting bars 716 disposed in an annular form and the end ring 717 that shortcircuits the plurality of conducting bars 716 at an end portion in the axial direction is realized.
(10) FeatureThe compressor 100 is a compressor that compresses a mixed refrigerant containing at least 1,2difluoroethylene and that enables high power at comparatively low costs by employing the induction motor 70.
(11) Modifications (111) First ModificationIn the aforementioned embodiment, the conducting bars 716 and the end ring 717 have been described in a form in which the conducting bars 716 and the end ring 717 are integrally molded with aluminum or an aluminum alloy. The conducting bars 716 and the end ring 717 are, however, not limited thereto.
For example, the conducting bars 716 and the end ring 717 may be molded with a metal whose electric resistance is lower than that of aluminum. Specifically, the conducting bars 716 and the end ring 717 may be molded with copper or a copper alloy.
According to a first modification, heat generation due to current that flows through the conducting bars 716 of the induction motor 70 is suppressed, which enables high power of the compressor 100.
In cases of being molded with copper and a copper alloy, it is not possible to mold the conducting bars 716 and the end ring 717 by a diecasting method. The conducting bars 716 and the end ring 717 are thus welded by brazing.
Needless to say, the conducting bars 716 and the end ring 717 may be molded with metals of different types. For example, the conducting bars 716 may be molded with copper or a copper alloy while the end ring 717 may be molded with aluminum or an aluminum alloy.
(112) Second ModificationThe heat sink 717a has heatradiation fins 717af projecting from an end surface of the end ring 717 in the direction of the center axis of the rotor 71 and extending in the radius direction of the rotor 71. In the present modification, six heatradiation fins 717af are disposed around the center axis at centerangle 60° intervals.
In the compressor 100, the rotation of the rotor 71 rotates the heat sink 717a, and heat radiation properties of the heatradiation fins 717af are thus improved, and, moreover, the rotation causes forced convection and suppresses an increase in the peripheral temperature, which enables high power of the compressor 100.
In addition, it is possible to suppress an increase in manufacturing costs because the heat sink 717a is formed on the end ring 717, and the heat sink 717a can be molded integrally with the end ring 717 when the end ring 717 is molded.
(113) Third ModificationIn the branch circuit 110, a refrigerant that has branched from the refrigerant circuit 11 flows. The branch circuit 110 is provided in parallel from a portion between an outdoor heat exchanger 17 and an expansion valve 18 of the refrigerant circuit 11 to a portion between the expansion valve 18 and an indoor heat exchanger 13. A second expansion valve 112, a cooling portion 111, and a third expansion valve 113 are connected to the branch circuit 110.
The cooling portion 111 is mounted on the outer circumferential surface of the casing 20 of the compressor 100 via a heat transfer plate. The mounted position thereof corresponds to the side of the stator 72 of the induction motor 70. The cooling portion 111 is a portion that cools the stator 72 indirectly by using the cold heat of the refrigerant flowing in the refrigerant circuit 11. Specifically, the second expansion valve 112 is connected to one end of a pipe fitted, in a state of being bent in a serpentine shape, into the heat transfer plate, and the third expansion valve 113 is connected to the other end thereof.
During cooling operation, a portion of the refrigerant flowing in the refrigerant circuit 11 branches at a portion between the outdoor heat exchanger 17 and the expansion valve 18 into the branch circuit 110, flows through the second expansion valve 112 whose opening degree has been adjusted, the cooling portion 111, and the third expansion valve 113 whose opening degree has been set to be fully open, in this order, and merges at a portion between the expansion valve 18 and the indoor heat exchanger 13. The opening degree of the second expansion valve 112 is adjusted so as to enable the refrigerant decompressed in the second expansion valve 112 to absorb heat in the cooling portion 111 and evaporate.
During heating operation, a portion of the refrigerant flowing in the refrigerant circuit 11 branches at a portion between the indoor heat exchanger 13 and the expansion valve 18 into the branch circuit 110, flows through the third expansion valve 113 whose opening degree has been adjusted, the cooling portion 111, and the second expansion valve 112 whose opening degree has been set to be fully open, in this order, and merges at a portion between the expansion valve 18 and the outdoor heat exchanger 17. The opening degree of the third expansion valve 113 is adjusted to enable the refrigerant decompressed in the third expansion valve 113 to absorb heat in the cooling portion 111 and evaporate.
With the aforementioned cooling structure, it is possible to cool the stator 72 by using the cold heat of the refrigerant that flows in the refrigerant circuit 11, which enables high power of the compressor.
(12) Configuration of Compressor 300 According to Second EmbodimentIn the first embodiment, a scroll compressor has been described as the compressor 100. The compressor is, however, not limited to a scroll compressor.
The compressor 300 has a vertically elongated cylindrical casing 220. The casing 220 has a substantially cylindrical cylinder member 221 that opens upward and downward, and an upper cover 222a and a lower cover 222b that are disposed on the upper end and the lower end of the cylinder member 221, respectively. The upper cover 222a and the lower cover 222b are fixed to the cylinder member 221 by welding to maintain airtightness.
The casing 220 accommodates constituent devices of the compressor 300, including a compression mechanism 260, a motor 270, a crank shaft 280, an upper bearing 263, and a lower bearing 290. The oil reservoir space So is formed in a lower portion of the casing 220.
In the lower portion of the casing 220, a suction pipe 223 that sucks a gas refrigerant and supplies the gas refrigerant to the compression mechanism 260 is disposed to pass through a lower portion of the cylinder member 221. One end of the suction pipe 223 is connected to a cylinder 230 of the compression mechanism 260. The suction pipe 223 is in communication with the compression chamber Sc of the compression mechanism 260. In the suction pipe 223, a lowpressure refrigerant of the refrigeration cycle before compression by the compressor 300 flows.
The upper cover 222a of the casing 220 is provided with a discharge pipe 224 through which a refrigerant that is to be discharged to the outside of the casing 220 passes. Specifically, an end portion of the discharge pipe 224 in the inner portion of the casing 220 is disposed in a highpressure space 51 formed in the upper side of the motor 270. In the discharge pipe 224, a highpressure refrigerant of the refrigeration cycle after compression by the compression mechanism 260 flows.
(122) Motor 270The motor 270 has a stator 272 and a rotor 271. Except for being used in the compressor 300, which is a rotary compressor, the motor 270 is basically equivalent to the motor 70 of the first embodiment and exerts performance and actions/effects equivalent to those of the motor 70 of the first embodiment. Therefore, description of the motor 270 is omitted here.
(123) Crank Shaft 280, Upper Bearing 263, and Lower bearing 290
The crank shaft 280 is fixed to the rotor 271. Further, the crank shaft 280 is supported by the upper bearing 263 and the lower bearing 290 to be rotatable about a rotation axis Rs. The crank shaft 280 has an eccentric portion 241.
(124) Compression Mechanism 260The compression mechanism 260 has the single cylinder 230 and a single piston 242 disposed in the cylinder 230. The cylinder 230 has a predetermined capacity and is fixed to the casing 220.
The piston 242 is disposed on the eccentric portion 241 of the crank shaft 280. The cylinder 230 and the piston 242 define the compression chamber Sc. Rotation of the rotor 271 revolves the piston 242 via the eccentric portion 241. In response to the revolution, the capacity of the compression chamber Sc changes, thereby compressing a gaseous refrigerant.
Here, “the capacity of the cylinder” means socalled theoretical capacity and, in other words, corresponds to the volume of a gaseous refrigerant sucked into the cylinder 230 through the suction pipe 223 during one rotation of the piston 242.
(125) Oil Reservoir Space SoThe oil reservoir space So is disposed in a lower portion of the casing 220. The oil reservoir space So stores the refrigerating machine oil O for lubricating the compression mechanism 260. The refrigerating machine oil O is the refrigerating machine oil described in the section of “(41) Refrigerating Machine Oil”.
(13) Operation of Compressor 300Operation of the compressor 300 will be described. When the motor 270 is started, the rotor 271 rotates with respect to the stator 272, and the crank shaft 280 fixed to the rotor 271 rotates. When the crank shaft 280 rotates, the piston 242 coupled to the crank shaft 280 revolves with respect to the cylinder 230. Then, a lowpressure gas refrigerant of the refrigeration cycle is sucked into the compression chamber Sc through the suction pipe 223. As a result of the piston 242 revolving, the suction pipe 223 and the compression chamber Sc become not in communication with each other, and in response to the capacity of the compression chamber Sc decreasing, the pressure in the compression chamber Sc starts to increase.
The refrigerant in the compression chamber Sc is compressed in response to the capacity of the compression chamber Sc decreasing and eventually becomes a highpressure gas refrigerant. The highpressure gas refrigerant is discharged through a discharge port 232a. Then, the highpressure gas refrigerant passes through a gap between the stator 272 and the rotor 271 and other parts and is discharged through the discharge pipe 224 disposed in the upper side of the casing 220.
(14) Features of Second Embodiment(141)
The compressor 300 is a compressor that compresses a mixed refrigerant containing at least 1,2difluoroethylene and that enables high power at comparatively low costs by employing an induction motor as the motor 270.
(142)
When using the compressor 300, which is a rotary compressor, as the compressor of the air conditioner 1, it is possible to reduce the packed amount of refrigerant compared with when a scroll compressor is used. Therefore, the compressor 300 is suitable for an air conditioner that uses a flammable refrigerant.
(15) Modification of Second EmbodimentDue to the compressor 300 employing the motor 270 equivalent to the motor 70 of the first embodiment, the modification is applicable to all described in “(11) Modifications” of the first embodiment.
(16) Other EmbodimentRegarding the form of the compressor, a screw compressor or a turbo compressor may be employed provided that a motor equivalent to the motor 70 is used.
Although embodiments of the present disclosure have been described above, it should be understood that various changes in the forms and the details are possible without deviating from the spirit and the scope of the present disclosure described in the claims.
REFERENCE SIGNS LIST

 11 refrigerant circuit
 60 compression unit
 70 induction motor
 71 rotor
 72 stator
 100 compressor
 260 compression unit
 270 induction motor
 271 rotor
 272 stator
 300 compressor
 716 conducting bar
 717 end ring
 717a heat sink (heatradiation structure)
 717af heatradiation fin (heatradiation structure)
 110 branch circuit (cooling structure)
 111 cooling portion (cooling structure)
 112 second expansion valve (cooling structure)
 113 third expansion valve (cooling structure)
PTL 1: Japanese Unexamined Patent Application Publication No. 2013124848
Claims
1. A compressor comprising:
 a compression unit that compresses a refrigerant containing at least 1,2difluoroethylene; and
 an induction motor that drives the compression unit.
2. The compressor according to claim 1, wherein
 a rotor of the induction motor has a plurality of conducting bars that are barshaped conductors and that are disposed in an annular form, and an end ring that shortcircuits the plurality of conducting bars at an end portion in an axial direction, and
 at least the conducting bars are formed of a metal whose electric resistance is lower than electric resistance of aluminum.
3. The compressor according to claim 1, wherein
 a rotor of the induction motor has a heatradiation structure.
4. The compressor according to claim 3, wherein
 the rotor of the induction motor has a plurality of conducting bars that are barshaped conductors and that are disposed in an annular form, and an end ring that shortcircuits the plurality of conducting bars at an end portion in an axial direction, and
 the heatradiation structure is formed on the end ring.
5. The compressor according to claim 3, wherein
 the heatradiation structure is a heat sink.
6. The compressor according to claim 1, further comprising:
 a cooling structure that cools a stator of the induction motor by a refrigerant.
7. The compressor according to claim 6, wherein
 the cooling structure cools the stator by cool heat of a refrigerant that flows in a refrigerant circuit to which the compressor is connected.
8. The compressor according to claim 1,
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and 2,3,3,3tetrafluoro1propene (R1234yf).
9. The compressor according to claim 8, point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), point C (32.9, 67.1, 0.0), and point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line segments BD, CO, and OA);
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
 the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
 the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
 the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
 the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
 the line segments BD, CO, and OA are straight lines.
10. The compressor according to claim 8, point G (72.0, 28.0, 0.0), point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments IA, BD, and CG);
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
 the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
 the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
 the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
 the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
 the line segments GI, IA, BD, and CG are straight lines.
11. The compressor according to claim 8, point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments BD and CJ);
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
 the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
 the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
 the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
 the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
 the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
 the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
 the line segments JP, BD, and CG are straight lines.
12. The compressor according to claim 8, point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments BD and CJ);
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
 the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
 the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
 the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
 the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
 the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
 the line segments JP, LM, BD, and CG are straight lines.
13. The compressor according to claim 8, point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments (excluding the points on the line segment BF);
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
 the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
 the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
 the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
 the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
 the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
 the line segments LM and BF are straight lines.
14. The compressor according to claim 8, point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9), or on the above line segments;
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
 the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
 the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
 the line segments LQ and QR are straight lines.
15. The compressor according to claim 8, point S (62.6, 28.3, 9.1), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments,
 wherein
 when the mass % of HFO1132(E), HFO1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
 the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
 the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
 the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
 the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
 the line segments SM and BF are straight lines.
16. The compressor according to claim 1,
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)) and trifluoroethylene (HFO1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
 the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO1132(E) based on the entire refrigerant.
17. The compressor according to claim 1,
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), and trifluoroethylene (HFO1123), in a total amount of 99.5 mass % or more based on the entire refrigerant, and
 the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO1132(E) based on the entire refrigerant.
18. The compressor according to claim 1, wherein point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0), point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0), point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4), point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3), point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C); point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0), point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895), point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516), point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and point W (0.0, 100.0a, 0.0), or on the straight lines GI and AB (excluding point point I, point A, point B, and point W); point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0), point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273), point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695), point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and point W (0.0, 100.0a, 0.0), or on the straight lines GI and AB (excluding point point I, point A, point B, and point W); point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0), point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014), point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207), point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and point W (0.0, 100.0a, 0.0), or on the straight lines GI and AB (excluding point point I, point A, point B, and point W); and point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0), point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098), point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9), point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and point W (0.0, 100.0a, 0.0), or on the straight lines GI and AB (excluding point point I, point A, point B, and point W).
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), 2,3,3,3tetrafluoro1propene (R1234yf), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
 if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′ C, and CG that connect the following 6 points:
 if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
 if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
 if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
 if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
19. The compressor according to claim 1, wherein point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0), point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4), point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3), point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C); point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0), point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177), point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and point W (0.0, 100.0a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W); point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0), point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783), point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and point W (0.0, 100.0a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W); point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0), point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05), point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207), point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and point W (0.0, 100.0a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0), point K′ (−1.892a+29.443, 0.0, 0.892a+70.557), point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9), point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and point W (0.0, 100.0a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), 2,3,3,3tetrafluoro1propene (R1234yf), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
 if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R1234yf is (100a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
 if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
 if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
 if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
 if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
20. The compressor according to claim 1, wherein point I (72.0, 0.0, 28.0), point J (48.5, 18.3, 33.2), point N (27.7, 18.2, 54.1), and point E (58.3, 0.0, 41.7), or on these line segments (excluding the points on the line segment EI;
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), difluoromethane(R32), and 2,3,3,3tetrafluoro1propene (R1234yf),
 when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments U, JN, NE, and EI that connect the following 4 points:
 the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
 the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
 the line segments JN and EI are straight lines.
21. The compressor according to claim 1, wherein point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), difluoromethane (R32), and 2,3,3,3tetrafluoro1propene (R1234yf),
 when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG; and GM that connect the following 5 points:
 the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
 the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
 the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
 the line segments NV and GM are straight lines.
22. The compressor according to claim 1, wherein point O (22.6, 36.8, 40.6), point N (27.7, 18.2, 54.1), and point U (3.9, 36.7, 59.4), or on these line segments;
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), difluoromethane (R32), and 2,3,3,3tetrafluoro1propene (R1234yf),
 when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
 the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
 the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
 the line segment UO is a straight line.
23. The compressor according to claim 1, wherein point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), difluoromethane (R32), and 2,3,3,3tetrafluoro1propene (R1234yf),
 when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
 the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
 the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
 the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
 the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
 the line segment TL is a straight line.
24. The compressor according to claim 1, wherein point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), difluoromethane (R32), and 2,3,3,3tetrafluoro1propene (R1234yf),
 when the mass % of HFO1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
 the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
 the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
 the line segment TP is a straight line.
25. The compressor according to claim 1, wherein point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
 the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
 the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
 the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
 the line segments KB′ and GI are straight lines.
26. The compressor according to claim 1, wherein point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments U, JR, RG, and GI that connect the following 4 points:
 the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
 the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
 the line segments JR and GI are straight lines.
27. The compressor according to claim 1, wherein point M (47.1, 52.9, 0.0), point P (31.8, 49.8, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GM);
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
 the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
 the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
 the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
 the line segments PB′ and GM are straight lines.
28. The compressor according to claim 1, wherein point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
 the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
 the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
 the line segments JR and GI are straight lines.
29. The compressor according to claim 1, wherein point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
 the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
 the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
 the line segment PS is a straight line.
30. The compressor according to claim 1, wherein point Q (28.6, 34.4, 37.0), point B″ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B″D);
 wherein
 the refrigerant comprises trans1,2difluoroethylene (HFO1132(E)), trifluoroethylene (HFO1123), and difluoromethane (R32),
 when the mass % of HFO1132(E), HFO1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO1132(E), HFO1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
 the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
 the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
 the line segments QB″ and B″D are straight lines.
31. A refrigeration cycle apparatus comprising the compressor according to claim 1.
Type: Application
Filed: Dec 18, 2018
Publication Date: Dec 17, 2020
Applicant: DAIKIN INDUSTRIES, LTD. (Osaka)
Inventors: Yoshinari ASANO (Osaka), Keiji AOTA (Osaka), Mitsushi ITANO (Osaka), Daisuke KARUBE (Osaka), Yuuki YOTSUMOTO (Osaka), Kazuhiro TAKAHASHI (Osaka), Yuzo KOMATSU (Osaka), Shun OHKUBO (Osaka), Tatsuya TAKAKUWA (Osaka), Tetsushi TSUDA (Osaka)
Application Number: 16/772,976