ELECTROANATOMICAL MAPPING SYSTEM
Apparatus for use with an electroanatomical mapping system, an elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system, an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other. The apparatus includes a signal-interface assembly. The signal-interface assembly includes a signal-input section configured to be signal connectable to said at least one sensor of the energy-delivery assembly. A signal-output section is configured to be signal connectable to an input section of the electroanatomical mapping system.
This application is a continuation of and claims the benefit of U.S. patent application Ser. No. 17/920,237, entitled “ELECTROANATOMICAL MAPPING SYSTEM WITH VISUALIZATION OF ENERGY-DELIVERY AND ELONGATED NEEDLE ASSEMBLIES,” and filed Oct. 20, 2022, which is a national stage entry of International Application No. PCT/IB2021/054590, entitled “ELECTROANATOMICAL MAPPING SYSTEM,” filed May 26, 2021, which claims the benefit of U.S. Provisional Application No. 63/040,052, entitled “ELECTROANATOMICAL MAPPING SYSTEM,” and filed Jun. 17, 2020, which are hereby incorporated by reference in their entireties.
TECHNICAL FIELDThis document relates to the technical field of (and is not limited to): (A) a signal-interface assembly for an electroanatomical mapping system (and/or a method associated therewith); and/or (B) an energy-delivery assembly having a sensor configured to be interfaced to a signal-input section of the signal-interface assembly of an electroanatomical mapping system (and/or a method associated therewith); and/or (C) a synergistic combination of an electroanatomical mapping system, an elongated needle assembly, an energy-delivery assembly and a signal-interface assembly (and/or a method associated therewith).
BACKGROUNDKnown medical devices are configured to facilitate a medical procedure, and help healthcare providers diagnose and/or treat medical conditions of sick patients.
SUMMARYIt will be appreciated that there exists a need to mitigate (at least in part) at least one problem associated with the existing (known) electroanatomical mapping systems. After much study of, and experimentation with, existing (known) electroanatomical mapping systems, an understanding (at least in part) of the problem and its solution have been identified (at least in part) and are articulated (at least in part) as follows:
Electroanatomic mapping refers to the acquisition and display (via a display device) of electrical information (signals) pertaining to (derived or sensed from) a biological feature of a patient in combination with spatial localization (a visual map) of a biological feature (this is done, preferably, in situ). An electroanatomical mapping system (EAM system) is configured to provide a display device configured to show (map out and indicate, preferably in real time or near real time, in situ) the three-dimensional anatomy of a biological feature (such as the heart, etc.) of the patient.
It is known that electroanatomical mapping systems may utilize magnetic sensors and/or electrical impedance sensors for generating anatomical maps. Moreover, known transcatheter interventional procedures are utilized for the treatment of a biological feature (such as the left side of the heart) of the patient. For instance, a known procedure among these is the pulmonary vein isolation (PVI) procedure that utilizes an ablation catheter by way of selective application (emission) of radio-frequency energy to a desired portion of the biological feature (such as, a biological wall, etc.). The known PVI procedure may be executed (performed) with assistance from an electroanatomical mapping system configured to visualize both the left atrium (of the heart) and the ablation catheter (preferably, this is done simultaneously and in situ). While under visualization (via the display device of the electroanatomical mapping system), a medical device (which transports the ablation catheter) may be maneuvered and/or navigated (preferably in situ) in such a way that the ablation catheter may be maneuvered to a desired biological feature (or a biological site) of the patient; once the desired biological site is located (by identification via the display device), and the ablation catheter is suitably positioned proximate to (or in contact with) the desired biological site (as indicated by the display device), radio-frequency ablation may be activated (via the ablation catheter) for formation of a desired lesion at the desired biological site.
It may be desirable to accomplish a procedure with less time and/or with more certainty, thereby reducing, at least in part, labor costs, operating room time, etc., associated with executing the procedure.
It may be desirable to provide, for the electroanatomical mapping system, a medical sheath assembly (which is steerable within the patient) configured to improve the procedural workflow of a procedure, such as the known PVI procedure, by allowing a medical device (such as a medical sheath assembly, etc.) to be visualized (in situ) along with an ablation device (such as an ablation catheter, etc.) via the display device of the electroanatomical mapping system.
Before an ablation procedure may be carried out, a transseptal puncture may be required to access the left atrium of the heart. This portion of the procedure may be very difficult to be properly, and confidently, visualized using the display device of the electroanatomical mapping system.
It may be desirable to provide, to users (such as electrophysiologists), an apparatus configured to enable visualization of a radio-frequency transseptal puncture needle by the electroanatomical mapping system.
It may be desirable to provide, for a procedure using energy puncturing, a signal switch assembly (an electrical switch box) configured to convey information (such as voltage measurements, etc.) from at least one medical device (such as, a combination of an ablation catheter and/or a medical sheath assembly) to the electroanatomical mapping system.
For instance, electrophysiologists may rely on a mix of ultrasound, such as, Intracardiac Echocardiography (ICE) and/or Transesophageal Echocardiography (TEE) and fluoroscopy to perform the transseptal puncture (preferably, in situ); these types of equipment may be, disadvantageously, very expensive to own, maintain and/or operate.
It may be desirable to perform the transseptal puncture by utilizing the electroanatomical mapping system. In this manner, the user may, advantageously, receive less (preferably no) or limited x-ray radiation from fluoroscopy, which may be a high priority; moreover, significant capital cost might be avoiding ultrasound technologies altogether.
It may be desirable to provide a steerable sheath assembly with sensors (such as electrodes) using the electroanatomical mapping system. It will be appreciated that a device may be needed for various sensor combinations deployed on the medical devices.
It may be desirable to share sensors of a combination of medical devices (such as a sheath assembly, an energy puncture device, etc.) for visualization of the medical devices via the display device of the electroanatomical mapping system.
It may be desirable to provide electroanatomic mapping based on the acquisition and display (via a display device) of electrical information (signals) pertaining to (derived or sensed from) a biological feature of a patient in combination with spatial localization (a visual map) of the biological feature along with at least one sensor (or two or more sensors) associated with at least one medical assembly such as a catheter (or two or more medical assemblies); this is done, preferably, in situ (during a procedure).
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus is for use with an electroanatomical mapping system, an elongated needle assembly (having a distal energy emitter configured to be detectable by the electroanatomical mapping system), an energy-delivery assembly (having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly; this is done in such a way that the distal energy emitter and the sensor are movable relative to each other). The apparatus includes and is not limited to a signal-interface assembly including a signal-input section. The signal-input section is configured to be signal connectable to the sensor of the energy-delivery assembly. The signal-interface assembly also includes a signal-output section configured to be signal connectable to an input section of the electroanatomical mapping system. The electroanatomical mapping system is configured to display, via a display device, a spatial positioning of the sensor of the energy-delivery assembly along with the distal energy emitter (of the elongated needle assembly); this is done, preferably, after: (A) the signal-input section, in use, is signal connected to the sensor of the energy-delivery assembly; and (B) the signal-output section, in use, is signal connected to the input section of the electroanatomical mapping system.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus is for use with an electroanatomical mapping system (including a signal-interface assembly), and is also for use with an elongated needle assembly (having a distal energy emitter configured to be detectable by the electroanatomical mapping system). The apparatus includes and is not limited to an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly; this is done in such a way that the distal energy emitter and the sensor are movable relative to each other. The sensor is also configured to be interfaced to a signal-input section of the signal-interface assembly. The electroanatomical mapping system is configured to display, via a display device, spatial positioning of the sensor of the energy-delivery assembly along with the distal energy emitter of the elongated needle assembly; this is done, preferably, after: (A) the signal-interface assembly, in use, is signal connected to said at least one sensor of the energy-delivery assembly; and (B) the signal-interface assembly, in use, is signal connected to the input section of the electroanatomical mapping system.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) a method. The method is for operating an electroanatomical mapping system (having a signal-interface assembly), an elongated needle assembly (having a distal energy emitter configured to be detectable by the electroanatomical mapping system), an energy-delivery assembly (having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly; this is done in such a way that the distal energy emitter and the sensor are movable relative to each other). The method includes displaying, via a display device of the electroanatomical mapping system, spatial positioning of the sensor of the energy-delivery assembly along with the distal energy emitter (of the elongated needle assembly); this is done, preferably, after: (A) the signal-input section, in use, is signal connected to the sensor of the energy-delivery assembly; and (B) the signal-output section, in use, is signal connected to the input section of the electroanatomical mapping system.
Other aspects are identified in the claims. Other aspects and features of the non-limiting embodiments may now become apparent to those skilled in the art upon review of the following detailed description of the non-limiting embodiments with the accompanying drawings. This Summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This Summary is not intended to identify potentially key features or possible essential features of the disclosed subject matter, and is not intended to describe each disclosed embodiment or every implementation of the disclosed subject matter. Many other novel advantages, features, and relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.
The non-limiting embodiments may be more fully appreciated by reference to the following detailed description of the non-limiting embodiments when taken in conjunction with the accompanying drawings, in which:
The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details unnecessary for an understanding of the embodiments (and/or details that render other details difficult to perceive) may have been omitted. Corresponding reference characters indicate corresponding components throughout the several figures of the drawings. Elements in the several figures are illustrated for simplicity and clarity and have not been drawn to scale. The dimensions of some of the elements in the figures may be emphasized relative to other elements for facilitating an understanding of the various disclosed embodiments. In addition, common, and well-understood, elements that are useful in commercially feasible embodiments are often not depicted to provide a less obstructed view of the embodiments of the present disclosure.
DETAILED DESCRIPTION OF THE NON-LIMITING EMBODIMENT(S)The following detailed description is merely exemplary and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure. The scope of the disclosure is defined by the claims. For the description, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the examples as oriented in the drawings. There is no intention to be bound by any expressed or implied theory in the preceding Technical Field, Background, Summary or the following detailed description. It is also to be understood that the devices and processes illustrated in the attached drawings, and described in the following specification, are exemplary embodiments (examples), aspects and/or concepts defined in the appended claims. Hence, dimensions and other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless the claims expressly state otherwise. It is understood that the phrase “at least one” is equivalent to “a”. The aspects (examples, alterations, modifications, options, variations, embodiments and any equivalent thereof) are described regarding the drawings. It should be understood that the disclosure is limited to the subject matter provided by the claims, and that the disclosure is not limited to the particular aspects depicted and described. It will be appreciated that the scope of the meaning of a device configured to be coupled to an item (that is, to be connected to, to interact with the item, etc.) is to be interpreted as the device being configured to be coupled to the item, either directly or indirectly. Therefore, “configured to” may include the meaning “either directly or indirectly” unless specifically stated otherwise.
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
The following is offered as further description of the embodiments, in which any one or more of any technical feature (described in the detailed description, the summary and the claims) may be combinable with any other one or more of any technical feature (described in the detailed description, the summary and the claims). It is understood that each claim in the claims section is an open ended claim unless stated otherwise. Unless otherwise specified, relational terms used in these specifications should be construed to include certain tolerances that the person skilled in the art would recognize as providing equivalent functionality. By way of example, the term perpendicular is not necessarily limited to 90.0 degrees, and may include a variation thereof that the person skilled in the art would recognize as providing equivalent functionality for the purposes described for the relevant member or element. Terms such as “about” and “substantially”, in the context of configuration, relate generally to disposition, location, or configuration that are either exact or sufficiently close to the location, disposition, or configuration of the relevant element to preserve operability of the element within the disclosure which does not materially modify the disclosure. Similarly, unless specifically made clear from its context, numerical values should be construed to include certain tolerances that the person skilled in the art would recognize as having negligible importance as they do not materially change the operability of the disclosure. It will be appreciated that the description and/or drawings identify and describe embodiments of the apparatus (either explicitly or inherently). The apparatus may include any suitable combination and/or permutation of the technical features as identified in the detailed description, as may be required and/or desired to suit a particular technical purpose and/or technical function. It will be appreciated that, where possible and suitable, any one or more of the technical features of the apparatus may be combined with any other one or more of the technical features of the apparatus (in any combination and/or permutation). It will be appreciated that persons skilled in the art would know that the technical features of each embodiment may be deployed (where possible) in other embodiments even if not expressly stated as such above. It will be appreciated that persons skilled in the art would know that other options may be possible for the configuration of the components of the apparatus to adjust to manufacturing requirements and still remain within the scope as described in at least one or more of the claims. This written description provides embodiments, including the best mode, and also enables the person skilled in the art to make and use the embodiments. The patentable scope may be defined by the claims. The written description and/or drawings may help to understand the scope of the claims. It is believed that all the crucial aspects of the disclosed subject matter have been provided in this document. It is understood, for this document, that the word “includes” is equivalent to the word “comprising” in that both words are used to signify an open-ended listing of assemblies, components, parts, etc. The term “comprising”, which is synonymous with the terms “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. Comprising (comprised of) is an “open” phrase and allows coverage of technologies that employ additional, unrecited elements. When used in a claim, the word “comprising” is the transitory verb (transitional term) that separates the preamble of the claim from the technical features of the disclosure. The foregoing has outlined the non-limiting embodiments (examples). The description is made for particular non-limiting embodiments (examples). It is understood that the non-limiting embodiments are merely illustrative as examples.
Claims
1. An energy delivery assembly for transseptal puncture adapted for use with an electroanatomical mapping system, the assembly comprising:
- a medical sheath having a dilator lumen;
- a medical dilator configured to advance through the dilator lumen of the medical sheath, the medical dilator having a puncture device lumen;
- an energy puncture device having a distal portion including a distal energy emitter configured to be detectable by the electroanatomical mapping system, the puncture device configured to advance through the puncture device lumen;
- at least one sensor coupled to at least one of the medical sheath and the medical dilator such that the distal energy emitter and said at least one sensor are movable relative to each other; and
- a signal-interface assembly including a signal-input section configured to be operably coupled to said at least one sensor and a signal-output section configured to be operably coupled to an input section of the electroanatomical mapping system;
- wherein the electroanatomical mapping system is configured to operably couple to the signal-interface assembly and to display spatial positions of the at least one sensor and the distal energy emitter.
2. The assembly of claim 1 wherein the energy-delivery assembly further includes a wire extending along a length of the puncture device, the wire electrically connected to the distal energy emitter.
3. The assembly of claim 1 wherein the medical sheath has at least one sensor.
4. The assembly of claim 1 wherein the medical dilator has a least one sensor.
5. The assembly of claim 4 wherein the puncture device is a radio-frequency puncture needle.
6. The assembly of claim 1 wherein the signal-interface assembly is configured to receive at least one sensor signal from the at least one sensor and to convey the least one sensor signal to the electroanatomical mapping system.
7. The assembly of claim 6 wherein the signal-interface assembly is configured to receive an energy signal associated with the energy-delivery assembly and convey the energy signal to the electroanatomical mapping system.
8. The assembly of claim 1 further comprising a display device configured to be electrically connected to the electroanatomical mapping system.
9. The assembly of claim 8 wherein the electroanatomical mapping system is configured to output mapping information to the display device, the mapping information includes a spatial position of the distal energy emitter and the at least one sensor.
10. The assembly of claim 1 further comprising a mapping cable configured to split into multiple conductors each having at least one dedicated pin electrically connected to at least one sensor, the mapping cable also configured to interface with the signal-interface assembly.
11. The assembly of claim 1 wherein the signal-interface assembly is configured to convey electrical signals from an aspect of the energy-delivery assembly to enable visualization of aspects of the energy-delivery assembly via a display device of the electroanatomical mapping system.
12. The assembly of claim 1 wherein the at least one sensor includes a dilator sensor coupled to the medical dilator and a sheath sensor coupled to the medical sheath.
13. The assembly of claim 12 wherein the medical sheath is steerable and includes a handle having a steering adjustment knob.
14. The assembly of claim 13 wherein the handle includes a conductor cable adapted to operably couple with the signal-interface assembly.
Type: Application
Filed: Sep 20, 2023
Publication Date: Jan 11, 2024
Inventors: Matthew MacDonald (Calgary), Charlene Leung (Scarborough), Bryan Gellner (Toronto)
Application Number: 18/471,072