COSMETIC INK COMPOSITION COMPRISING A SURFACE TENSION MODIFIER

A cosmetic ink composition comprises a particulate material, a polymeric dispersant, a rheology modifier, and a surface tension modifier, wherein the surface tension modifier is selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof. The particulate material can have a Particle Size Distribution D50 of about 100 nm to about 2,000 nm. The rheology modifier can be selected from the group consisting of alkali swellable emulsion polymers, hydrophobically modified alkali swellable emulsion polymers, and combinations thereof. The cosmetic ink composition can have a surface tension of from about 20 to about 45 mN/m.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 17/366,168 filed on Jul. 2, 2021, which is a continuation of U.S. patent application Ser. No. 16/798,559 filed on Feb. 24, 2020, now U.S. Pat. No. 11,083,672, granted on Aug. 10, 2021, which is a continuation of U.S. patent application Ser. No. 16/262,970 filed on Jan. 31, 2019, now U.S. Pat. No. 10,610,471, granted on Apr. 7, 2020, which claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Patent Application Ser. No. 62/624,925 filed on Feb. 1, 2018, the entire disclosures of all of which are fully incorporated by reference herein.

FIELD OF THE INVENTION

Described herein is an ink composition for inkjet printing applications, and more particularly a cosmetic ink composition comprising a particulate material and a surface tension modifier that can provide coverage of skin imperfections and durability on a wide range of skin types while still being stable and suitable for high frequency printing via thermal and/or piezo inkjet printheads.

BACKGROUND OF THE INVENTION

Most printing applications are designed for printing onto white substrates for document production or photo printing. For such applications, black inks are primarily used in combination with three or more colored inks. Formulating stable black inks and colored inks is well understood. For instance, it is known that molecular dyes will generally not exhibit settling over time if they are soluble in the carrier. In addition, pigment-based black inks generally utilize particle sizes small enough to be suspended in low viscosity carriers and take advantage of both Stokes' Law and Brownian motion to keep the particles suspended. However, these inks exhibit very low opacity, as dyes are transparent by nature and pigmented-based black inks use particle sizes that are small enough to be suspended but are much smaller than the particle sizes required to scatter visible light. For opacifying purposes, optimal light scattering occurs at half the wavelength of light. Since the visible light spectrum ranges from about 400 to about 700 nm, the optimal particle size for opacification is from about 200 to about 350 nm. This is significantly larger than the particle size of stable black pigment-based inks used in consumer printing applications which generally comprise particles that are less than about 50 nm in size.

For cosmetic printing applications, it is known that the ink must be sufficiently opaque to cover and/or hide skin imperfections. However, it is difficult to formulate an opaque stable cosmetic ink which can be jetted due to the particle size and levels needed to achieve opacity and the gravitational settlement of the large and/or dense particles used to create such inks. For many years, the inkjet printing industry has attempted to create stable white inks that are compatible with inkjet printer cartridges and nozzle technology. However, even the most stable current white inks demonstrate particle settling over time if left undisturbed. Manufacturers of such inks recommend vigorous shaking on a daily or weekly basis to redisperse the particles and/or recommend that these inks are recirculated during use.

In addition to particle suspension stability, cosmetic inks should also be durable on a wide range of skin types. The particles in cosmetic inks must be deposited onto the skin and stay in place to be effective in covering skin imperfections. This is challenging because the surface properties of skin can vary on a single person and from person-to-person. It is known that the contact angle of water on a person's cheek can vary from 0-110 degrees due to different levels of sebum production and/or skin care technique variation from person to person. As a result, cosmetic inks will spread differently, dry at different rates, and have varying durability on the skin, and thus will provide varying coverage from person to person.

As such, there is a need for an opaque inkjet cosmetic ink composition that can be used on a wide range of skin types to hide and/or cover skin imperfections. In particular, there is a need for a cosmetic ink composition that comprises particles that can provide opacity and has a surface tension that will increase wettability and decrease dry time on skin, while still being stable.

SUMMARY OF THE INVENTION

A cosmetic ink composition comprises: (a) from about 1 to about 45 active wt % of a particulate material having a Particle Size Distribution D50 of about 100 nm to about 2,000 nm; (b) a rheology modifier, wherein the rheology modifier is selected from the group consisting of an alkali swellable emulsion polymer, a hydrophobically modified alkali swellable emulsion polymer, and combinations thereof; (c) a polymeric dispersant; and (d) a surface tension modifier, wherein the surface tension modifier is selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof.

A cosmetic ink composition comprises: (a) from about 1 to about 45 active wt % of a particulate material; (b) greater than about 0.30 active wt % of a rheology modifier, wherein the rheology modifier is selected from the group consisting of a (meth)acrylate polymer, a (meth)acrylate copolymer, and mixtures thereof; (c) from about 0.01 to about 1 active wt % of a polymeric dispersant; (d) from about 0.1 to about 5 active wt % of a surface tension modifier, wherein the surface tension modifier is selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof; and (e) from about 10 to about 30 active wt % of a humectant.

A cosmetic ink composition comprises: (a) a particulate material comprising titanium dioxide; (b) a rheology modifier, wherein the rheology modifier is selected from the group consisting of a (meth)acrylate polymer, a (meth)acrylate copolymer, and mixtures thereof; (c) a polymeric dispersant; and (d) from about 0.1 to about 5 active wt % of a surface tension modifier, wherein the surface tension modifier is selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed the same will be better understood from the following description taken in conjunction with the accompanying drawings in which:

FIG. 1 is an exploded view of a personal care device for use in depositing the cosmetic ink composition described herein; and

FIG. 2 is an exploded view of a cartridge containing the cosmetic ink composition described herein.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, “active wt %” and “wt % (active)” refers to the amount of solid of an ingredient dissolved or suspended in water in the composition.

As used herein, “ambient conditions” refers to a temperature of about 23 degrees Celsius (° C.) and 50% relative humidity (RH).

As used herein, “durable” refers to a property of the composition that describes the ability to dry quickly and withstand wear on skin.

As used herein, “Particle Size Distribution D50” refers to the diameter where fifty percent of the distribution has a smaller particle size.

As used herein, “Particle Size Distribution D90” refers to the diameter where ninety percent of the distribution has a smaller particle size.

As used herein, “separation” refers to the formation of a clear fluid layer at the top of a sample regardless of the uniformity of the particles in the sample below the clear fluid layer. Separation can include particle settling and/or syneresis.

As used herein, “settling” refers to the falling of particles in a composition due to gravity (according to Stokes' Law) to the bottom of a container. Particle settling can be affected by the size of the particles and their agglomeration over time.

As used herein, “static storage” refers to storage of a composition in the absence of vigorous or sustained vibration, agitation, or mixing prior to analysis or deposition of the composition.

As used herein, “syneresis” means phase separation, i.e. extraction or expulsion of a liquid from a gel, in this case a weak colloidal gel. The particles in a composition exhibiting syneresis are still uniformly suspended below the clear fluid layer.

As used herein, “ratio of polymeric dispersant to rheology modifier” refers to the ratio of the active wt % of the polymeric dispersant divided by the active wt % of the rheology modifier.

As used herein, “the storage modulus” or “G′” refers to the measure of the stored energy, representing the elastic portion of the composition.

As used herein, “the loss modulus” or “G″” refers to the measure of the energy dissipated as heat, representing the viscous portion of the composition.

As used herein, “weight percent as added” refers to the amount of the total active plus water as added to the composition.

As used herein, “zeta potential” refers to the electrokinetic potential of the cosmetic ink composition.

As used herein, the articles “a” and “an” are understood to mean one or more of the material that is claimed or described, for example, “a rheology modifier” or “an active”.

All weights, measurements and concentrations herein are measured at ambient conditions unless otherwise specified.

All percentages, parts, and ratios as used herein are based upon the total weight of the cosmetic ink composition, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the level as added in the composition, unless otherwise specified.

Cosmetic inks can require a white or light colored particulate material comprising particles large enough to be visually perceptible to the human eye in order to create opacity to cover skin imperfections. However, printing a cosmetic ink composition comprising a particulate material having a particle size large enough to be visually perceptible can be a challenge for current inks, printers, and/or cartridges. These challenges are caused primarily by the settling of the large, dense particles and secondarily by the packing of the settled particles in the cartridge. Re-mixing, either by automated mixing or hand shaking, may not be compatible with consumer in-home or hand-held printing purposes because of the vigorous and repeated re-mixing needed to keep the particles uniformly suspended.

In addition, cosmetic inks should be able to spread on the skin to provide sufficient coverage of skin imperfections and be durable on a wide variety of skin types. However, this can be difficult because of the variability in the surface properties of the skin. If the surface tension of the cosmetic ink is too high, the cosmetic ink can bead-up on the skin and not properly spread, impacting the ability of the cosmetic ink to cover skin imperfections. Surprisingly, it was found that the inclusion of certain surface tension modifiers in the cosmetic ink composition can improve the coverage and durability on skin without lowering viscosity and disrupting particle suspension stability. In particular, it was found that a cosmetic ink composition comprising a particulate material, such as TiO2, a rheology modifier selected from the group consisting of alkali swellable emulsion (“ASE”) polymers, hydrophobically modified alkali swellable emulsion (“HASE”) polymers, and combinations thereof, a polymeric dispersant, and a surface tension modifier selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof, can provide coverage and durability on a range of skin types while maintaining viscosity and long-term particle suspension stability. Also described herein is a personal care device for depositing the cosmetic ink composition.

Cosmetic Ink Composition

The cosmetic ink composition can comprise a particulate material, rheology modifier, a polymeric dispersant, and a surface tension modifier. Without being limited by theory, it is believed that the surface tension modifier can lower the surface tension of the cosmetic ink composition such that the cosmetic ink composition is capable of wetting a wide range of skin types without lowering the viscosity of the composition, which can disrupt the suspension of the particles.

It was also found that balancing of the agglomeration of the particles and viscosity of the cosmetic ink composition can be used to inhibit particle settling, providing particle suspension stability beyond which has been previously reported without hindering high frequency printing capabilities via thermal and/or piezo inkjet printheads. One advantage to this is that little to no shaking, and/or agitation of the cosmetic ink composition by the consumer or automated mechanical processes before and/or during printing is needed to re-disperse the particles. This can make the cosmetic ink composition more user-friendly as it does not require the consumer to perform an additional step to re-disperse the particles and/or can eliminate the need for agitation or rotation systems, including automated systems, within the printing device, cartridge, printer servicing station, and/or docking station. In one aspect, the cosmetic ink composition need not be agitated or shaken to re-disperse the particles before and/or during use because the particles can remain in suspension over the shelf-life of the product.

Without being limited by theory, it is believed that the cosmetic ink composition can be stabilized using a polymeric dispersant to minimize and/or prevent particle agglomeration and a rheology modifier to introduce a secondary structure and build viscosity to suspend the particles in a weak colloidal gel. The colloidal gel can be strong enough to hold the particles in suspension when not printing (thus inhibiting particle settling), but weak enough to break up during printing. Without being limited by theory, it is believed that the amphilicity of the hydroxyl group(s) and alkyl chains of the surface tension modifier can impart some surface activity without significantly disrupting the colloidal gel.

In one aspect, the cosmetic ink composition can be a skin care composition. The cosmetic ink composition can hide or camouflage a skin imperfection, such as hyperpigmentation, when deposited precisely and substantially only onto the skin imperfection.

In one aspect, the cosmetic ink composition can be jetted onto any surface, preferably a keratinous surface including human skin and/or hair.

The cosmetic ink composition can be non-Newtonian, meaning the cosmetic ink composition can have a shear dependent viscosity and/or viscoelastic properties. The cosmetic ink composition can show shear thinning effects under the fluid ejection conditions in which the ink is moved between the cartridge and the printhead of an inkjet device. When the cosmetic ink composition is jetted, the shear rate can increase, resulting in a decrease in the viscosity. Thus, the cosmetic ink composition can be stored without particle settling, yet the viscosity and particle size are such that the cosmetic ink composition can still be printed.

In one aspect, the particulate material can be hydrophilic. The particulate material can be substantially coated with one or more ingredients to cause the particulate material to become more hydrophilic. As used herein, “substantially coated” can mean at least about 25%, preferably greater than about 50%, surface coverage of the particulate material, more preferably greater than about 75%, most preferably greater than about 90%. Suitable coating ingredients that can render the particulate material hydrophilic in nature can include silica, alumina, polyethylene glycol (PEG) 12 dimethicone, phytic acid, sodium glycerophosphate, and combinations thereof. The particulate material can be substantially coated with one or more coating ingredients using techniques known in the art. One advantage to using a hydrophilic particulate material is that hydrophilic particulate material can be more easily dispersed in water. In one aspect, the particulate material can be titanium and/or iron oxide which has been substantially coated with silica and/or alumina.

Suitable particulate materials can include pigments; encapsulated pigments; mica; clay; mixed metal oxide pigments; metal oxides such as iron oxide, titanium dioxide, zinc oxide, aluminum hydroxide, iron oxide, and combinations thereof; boron nitride; silica; talc; basic lead carbonate; magnesium silicate; baryte (BaSO4); calcium carbonate; pearlescent; colorants, including natural colorants and synthetic monomeric and polymeric colorants; dyes such as azo, indigoid, triphenylmethane, anthraquinone, and xanthine dyes which are designated as D&C and FD&C blues, browns, greens, oranges, reds, yellows, etc.; insoluble metallic salts of certified color additives, referred to as the Lakes; and combinations thereof.

In one aspect, the particulate material can comprise titanium dioxide, iron oxide, and combinations thereof. In one aspect, the titanium dioxide and/or iron oxide can be readily dispersed in water. In one aspect, the titanium dioxide and/or iron oxide is not hydrophobically treated before use in the cosmetic ink composition because it may not be readily dispersed in water. Suitable particulate material can include slurries of titanium dioxide and iron oxide available from KOBO Products Inc (South Plainfield, NJ), or equivalents.

In one aspect, the cosmetic ink composition comprises a white pigment.

In one aspect, the cosmetic ink composition can have a white appearance. Alternatively, the cosmetic ink composition can have a white appearance with tints of red and/or yellow.

Typical levels of particulate material for sufficient opacity to hide and/or camouflage skin imperfections can be around 30 active wt %. In one aspect, the cosmetic ink composition can comprise greater than about 15 active wt % particulate material, alternatively greater than about 20 active wt %, alternatively greater than about 30 active wt %. In one aspect, the cosmetic ink composition can comprise from about 1 to about 45 active wt % particulate material, alternatively from about 3 to about 30 active wt %, alternatively from about 5 to about 25 active wt %, alternatively from about 8 to about 18 active wt %.

The particulate material can comprise particles having a Particle Size Distribution (PSD) D50 of about 100 nm to about 2,000 nm, alternatively from about 150 nm to about 1,000 nm, alternatively from about 200 nm to about 450 nm, alternatively from about 200 nm to about 350 nm. In one aspect, the particulate material can comprise particles having a PSD D90 of less than about 2 μm, alternatively less than about 1 μm. In one aspect, the particulate material can comprise particles having a PSD D90 of from about 700 to about 900 μm. Without being limited by theory, it is believed that if the particles are too big, they can clog the microfluidic channels of the cartridge and disrupt printing. One skilled in the art would understand that an acceptable particle size can vary depending on printhead die architecture. In one aspect, the particulate material can comprise any PSD so long as the particles can move through the microfluidic channels of the cartridge and/or the printhead without causing clogging.

The Particle Size Distribution can be measured according to the Particle Size Distribution Method described hereafter.

The particulate material can have a refractive index of between about 1.1 and about 5.0, alternatively from about 1.5 to about 4, alternatively from about 2 to about 3.

The particulate material can have a density range of from about 1.5 to about 6 g/mL, alternatively from about 2 to about 4 g/mL.

The cosmetic ink composition can comprise a rheology modifier. Rheology modifiers can assist in preventing settling by keeping the particles uniformly suspended such that little to no agitation of the cosmetic ink composition is needed.

One preferred group of rheology modifiers are ASE polymers. ASE polymers contain a balance of hydrophilic (meth)acrylic acid monomers and hydrophobic (meth)acrylate ester monomers and can be supplied at high volume solids in liquid form. ASE polymers rely on a change from low to high pH (neutralization) to trigger thickening. The “trigger” is built into the polymer by creating an approximately 50:50 ratio of (meth)acrylic acid, which is soluble in water, and a (meth)acrylate ester, which is not soluble in water. When the acid is un-neutralized (low pH), the polymer is insoluble in water and does not thicken. When the acid is fully neutralized (high pH), the polymer becomes soluble and thickens. ASE polymers are supplied at low pH (<5) and maintain a low as—supplied viscosity (<100 cP) at solids of up to 35%. When subject to a pH of about 7 or higher, ASE polymers solubilize, swell, and thicken the composition through volume exclusion. The degree of thickening can be related to the molecular weight of the polymer. Because their performance depends on water absorption and swelling, ASE polymers tend to be very high in molecular weight, which allows them to thicken efficiently. The rheology profiles ASE polymers create are typically steeply shear-thinning (pseudoplastic), and thus ASE polymers are well suited to build high viscosity at very low shear rates. Different rheological characteristics can be achieved by manipulating the molecular weight, as well as the types and amounts of acid and ester monomers, of the polymer.

In one aspect, the hydrophilic monomers of the ASE polymer can include (meth)acrylic acid and maleic acid. In one aspect, the hydrophobic monomers of the ASE polymer can include the esters of (meth)acrylic acid with C1- to C4-alcohols, in particular ethyl acrylate, butyl acrylate, and methyl methacrylate.

In one aspect, the ASE polymer can be synthesized from 10-90 wt % of Hydrophilic Monomer A and 10-90 wt % of Hydrophobic Monomer B. The structure of Hydrophilic Monomer A and Hydrophobic Monomer B are shown below.

wherein R1 and R2 are independently hydrogen or methyl;
wherein R3 is C1 to C4 alkyl.

Yet another group of rheology modifier suitable for use in the cosmetic ink composition described herein are HASE polymers. These are tertiary polymers that build on the ASE polymer chemistry by adding a hydrophobic acrylic ester and/or vinyl ester monomer to the polymer composition. HASE polymers retain the pH dependent behavior of their ASE counterparts, but in addition to absorbing water, HASE polymers also thicken via hydrophobe association. This mechanism, known as associative thickening (i.e. associating with any hydrophobic moiety in the composition), offers performance properties over a wider range of shear levels and enables a wider range of rheology profiles than is possible with volume exclusion thickeners such as ASE and cellulosic compositions.

The hydrophilic and hydrophobic monomers of the HASE polymers can be the same as described with respect to the ASE polymers. The associative monomer of the HASE polymer can be a monomer that shows a strong hydrophobic character. A preferred associative monomer is ester of (meth)acrylic acid with C8-C22 alcohols.

In one aspect, the HASE polymer can be synthesized from 10-90 wt % Hydrophilic Monomer A, 10-90 wt % Hydrophobic Monomer B, and 0.01 to 2 wt % Associative Monomer C. The structure of Associate Monomer C is shown below.

wherein R4 is hydrogen or methyl;
wherein R5 is C8 to C22 alkyl;
wherein n is an integer from 0 to 50.

Alternatively, the HASE polymer can be synthesized from 10-90 wt % Hydrophilic Monomer A, 10-90 wt % Hydrophobic Monomer B, and 0.01 to 2 wt % Associative Monomer D. The structure of Associative Monomer D is shown below.

wherein R6 is hydrogen or methyl;
wherein R7 is C8 to C22 alkyl.

In one aspect, the associative monomer can be selected from the group consisting of steareth-20 methacrylate, beheneth-25 methacrylate, vinyl neodecanoate, and combinations thereof. In one aspect, more than one associative monomers can be used in the synthesis of the HASE polymer.

In one aspect, ASE and HASE polymers can comprise a cross-linking agent. The cross-linking agent can contain at least two ethylenically unsaturated moieties, alternatively at least three ethylenically unsaturated moieties. Suitable cross-linking agents can include divinyl benzene, tetra allyl ammonium chloride, allyl acrylates, methacrylates, diacrylates, dimethacrylates of glycols and polyglycols, butadiene, 1,7-octadiene, allyl-acrylamides, allyl-methacrylamides, bisacrylamidoacetic acid, N, N′-methylene-bisacrylamide, polyol polyallylethers such as polyallylsaccharose and pentaerythrol triallylether, and mixtures thereof. The cross-linking agent can be present at a level of from about 25 to about 5,000 ppm, alternatively from about 50 to about 1,000 ppm, alternatively from about 100 to about 500 ppm.

Another group of rheology modifiers are hydrophobically-modified ethylene oxide-based urethane (HEUR) polymers. Unlike ASE or HASE-type rheology modifiers, HEUR polymers are non-ionic and soluble at any pH. This solubility is due to the polymer's ethylene oxide backbone, which is water soluble and makes up the majority of the polymer structure. Thus, HEUR polymers require a hydrophobic moiety in the composition to interact with the ethylene oxide backbone to impart structure. The cosmetic ink composition can comprise a HEUR polymer. Alternatively, the cosmetic ink composition comprises little to no hydrophobic moieties and does not comprise a HEUR polymer.

The rheology modifier can be a (meth)acrylate polymer, a (meth)acrylate copolymer, and mixtures thereof. The rheology modifier can be selected from the group consisting of ASE polymers, HASE polymers, and combinations thereof. Suitable HASE polymers can include ACULYN™ Excel; ACRYSOL™ TT615; ACULYN™ 22; ACULYN™ 88; (all available from The DOW Chemical Company, Lake Zurich, IL); and combinations thereof. Suitable ASE polymers can include Rheovis® 1125 (available from BASF Corporation, Charlotte, NC), ACULYN™ 33; ACULYN™ 38 (both available from The DOW Chemical Company, Lake Zurich, IL); and combinations thereof. The cosmetic ink composition can comprise an ASE polymer. Alternatively, the cosmetic ink composition can comprise an HASE polymer.

The rheology modifier does not consist of a surfactant, an amine oxide, and/or a cellulosic ether.

The cosmetic ink composition can comprise any amount of rheology modifier so long as the first dynamic viscosity of the cosmetic ink composition is greater than about 500 cP at a shear rate of 0.1 sec−1 measured at 25° C., preferably greater than about 1,100 cP at a shear rate of 0.1 sec−1 measured at 25° C. The cosmetic ink composition can comprise greater than about 0.30 active wt % rheology modifier, alternatively greater than about 0.40 active wt %, alternatively greater than about 0.50 active wt %. The cosmetic ink composition can comprise from about 0.30 to about 1 active wt % rheology modifier, alternatively from about 0.30 to about 0.80 active wt %, alternatively from about 0.40 to about 0.50 active wt %. Active wt % can be measured using standard High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) techniques. One advantage to keeping the level of rheology modifier within this range is that the viscosity of the cosmetic ink composition can be built such that the particles can be suspended in the composition. The particles can be suspended for about 11 days or more at 25° C., alternatively about 30 days or more at 25° C., alternatively for about 90 days or more at 25° C., alternatively for about 300 days or more at 25° C. Without being limited by theory, it is believed that at levels of rheology modifier below this range, the particles may not be sufficiently suspended and settling may occur. If the level of rheology modifier is too high, the viscosity of the cosmetic ink composition may increase to a point that can impact jetting (i.e. the cosmetic ink composition may not shear thin enough for efficient printing).

In one aspect, the cosmetic ink composition can be substantially free of neutral inorganic salts (as compared to an alkali salt base, like NaOH). Without being limited by theory, it is believed that neutral inorganic salts, such as calcium chloride or sodium chloride, can increase the ionic strength of the cosmetic ink composition and can disrupt the internal structure, thus impacting stability. It is known that HASE and/or ASE polymers become polyelectrolytes at high pHs. As pH increases, the carboxylic acids on the HASE and/or ASE polymers can be neutralized, generating ionic groups on the polymer chains that can produce electrostatic repulsion. These electrostatic repulsions can cause the polymer to expand and form an internal structure in the composition. It is believed that inorganic neutral salts can shield this electrostatic repulsion and can cause the HASE and/or ASE polymer to change structure, and thus its effectiveness in promoting stability.

The cosmetic ink composition comprises a polymeric dispersant. The polymeric dispersant can be a low molecular weight linear or branched homopolymer or copolymer that can act to control particle size and can help maintain a low viscosity in the cosmetic ink composition. The polymeric dispersant does not greatly increase viscosity of the cosmetic ink composition. Examples of polymeric dispersants that can be used herein can include polymers obtained from one or more hydrophilic monomers and optionally hydrophobic monomers.

Non-limiting examples of hydrophilic monomers can include styrene sulfonic acid; ALPHA, BETA-ethylenically unsaturated carbonic acid; derivatives of ALPHA, BETA-ethylenically unsaturated carbonic acid; acrylic acid; derivatives of acrylic acid; methacrylic acid; derivatives of methacrylic acid; maleic acid; derivatives of maleic acid; itaconic acid; derivatives of itaconic acid; fumaric acid; derivatives of fumaric acid; and combinations thereof.

Non-limiting examples of hydrophobic monomers can include styrene; derivatives of styrene; vinyltoluene; derivatives of vinyltoluene; vinylnaphthalene; derivatives of vinylnaphthalene; butadiene; derivatives of butadiene; isoprene; derivatives of isoprene; ethylene; derivatives of ethylene; propylene; derivatives of propylene; alkyl esters of acrylic acid; alkyl esters of methacrylic acid; and combinations thereof.

The polymeric dispersant may also comprise a monomer selected from the group consisting of a polyoxyethylene group, a hydroxyl group, acrylamide, acrylamide derivatives, dimethylaminoethyl methacryate, ethoxyethyl methacrylate, butoxyethyl methacrylate, ethoxytriethylene methacrylate, methoxypolyethyleneglycol methacrylate, vinylpyrrolidone, vinylpyridine, vinylalcohol, alkylethers any salts thereof, and combinations thereof.

The polymeric dispersant may be in the acid form. The polymeric dispersant can be a salt of the acid form. Non-limiting examples of salts can include onium compounds of hydrogen, alkali metals, ammonium ion, organic ammonium ion, phosphonium ion, sulfonium ion, oxonium ion, stibonium ion, stannonium ion, iodonium ion, other onium ions, and combinations thereof.

In one aspect, the polymeric dispersant can be a polyacrylic acid or a salt thereof, such as sodium, potassium, ammonium, and mixtures thereof. In one aspect, the polymeric dispersant can be sodium polyacrylate such as Darvan® 811D (available from RT Vanderbilt Holding Company Inc., Norwalk, CT), ammonium polyacrylate having a weight average molecular weight of about 3,500 daltons such as Darvan® 821A (available from RT Vanderbilt Holding Company Inc.), and combinations thereof.

The polymeric dispersant can have a weight average molecular weight of less than about 20,000 daltons, preferably less than about 10,000 daltons, more preferably less than about 5,000 daltons. The cosmetic ink composition can comprise a polymeric dispersant having a weight average molecular weight of from about 1,000 to about 20,000 daltons, alternatively from about 1,000 to about 10,000 daltons, alternatively from about 2,000 to about 5,000 daltons, alternatively from about 2,500 to about 4,000 daltons. Weight average molecular weight can be measured by standard High Performance Size-Exclusion Chromatography per ASTM method D5296-11 (Sep. 1, 2011).

In one aspect, the polymeric dispersant is not a film forming polymer. Without being limited by theory it is believed that the polymeric dispersant will not form a film because of the low molecular weight.

The cosmetic ink composition can comprise from about 0.01 to about 1 active wt % polymeric dispersant, alternatively from about 0.10 to about 0.85 active wt %, alternatively from about 0.20 to about 0.75 active wt %, alternatively about 0.30 to about 0.65 active wt %. Without being limited by theory, it is believed that the polymeric dispersant can control agglomeration, and thus the particle size, of the particulate material by creating a negative surface charge around the particles. Thus, the polymeric dispersant can help to maintain a particle size that is compatible with printer cartridges and nozzles. Without being limited by theory, it is believed that a cosmetic ink composition comprising below 0.01 active wt % polymeric dispersant may not have sufficient particle size control and/or the viscoelastic modulus may be too high to allow for reliable refill of the microfluidics.

The ratio of the polymeric dispersant to the rheology modifier can be less than about 1. The ratio of polymeric dispersant to rheology modifier can be from about 0.10 to about 0.75, alternatively from about 0.30 to about 0.65. Without being limited by theory it is believed that if the level of polymeric dispersant is greater than the level of rheology modifier, the rheology modifier may not be able to build the internal structure needed to suspend the particles. If the ratio of polymeric dispersant to rheology modifier is too low, agglomeration may not be well controlled and the particle size may become too large to fit through printer nozzles, making printing difficult.

It is believed that stability is inversely proportional to the level of polymeric dispersant and directly proportional to the level of rheology modifier.

The cosmetic ink composition can comprise a surface tension modifier. In one aspect, the surface tension modifier can be a C1-C16 alcohol, a C5-C18 diol, and combinations thereof. As used herein, “C1-C16 alcohol” refers to nonionic molecules comprising one hydroxyl group, from about 1 to about 16 carbon atoms, and further comprising only carbon, hydrogen, halogen, and/or oxygen atoms. As used herein, “C5-C18 diol” refers to nonionic molecules comprising two hydroxyl groups, from about five to about 18 carbon atoms, and further comprising of only carbon, hydrogen, and/or oxygen atoms. The C1-C16 alcohols and/or C5-C18 diols may be saturated, unsaturated, linear, cyclic and/or branched. In one aspect, the C1-C16 alcohols and/or C5-C18 diols can be free of carboxylic acids moieties.

Non-limiting examples of C1-C16 alcohol surface tension modifiers can include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, farnesol, benzyl alcohol, phenyl ethyl alcohol, phenoxyethanol, 2-phenylphenol, methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, isobutyl 4-hydroxybenzoate, chloroxylenol, 2-methyl 5-cyclohexypentanol, triclosan, and combinations thereof.

Non-limiting examples of C5-C18 diol surface tension modifiers can include 1,2-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 1,2-octanediol, 1,8-octanediol, 2-methyl 5-cyclohexypentanol, 1,2-decanediol, 3-[(2-Ethylhexyl)oxy]-1,2-propanediol and mixtures thereof.

In one aspect, the surface tension modifier can comprise a C6-C12 alcohol. In one aspect, the surface tension modifier can comprise a mixture of 1,2-Hexanediol and 1,2-Octanediol (commercially available as SymDiol® 68 from Symrise, AG, Branchburg, NJ). In one aspect, the surface tension modifier can comprise a C15 alcohol, such as Farnesol (commercially available from Symrise AG, Branchburg, NJ). In one aspect, the surface tension modifier can comprise ethanol.

The cosmetic ink composition can comprise from about 0.1 to about 5 active wt % of a surface tension modifier, alternatively from about 0.50 to about 3 active wt %, alternatively from about 1 to about 2 active wt %. Alternatively, the cosmetic ink composition can comprise from about 0.005 to about 3 active wt % of a surface tension modifier.

One advantage to including such a surface tension modifier in the cosmetic ink composition is that it can lower the surface tension while maintaining the viscosity and stability of the cosmetic ink. Another advantage is that it can provide preservative benefits. A preservative can help to prevent microbial growth in the cosmetic ink composition, for instance if the cosmetic ink composition becomes contaminated with bacteria from the skin.

Surfactants, such as alkyl amine oxides, are known to reduce surface tension of aqueous compositions. Without being limited by theory, it is believed that in the cosmetic ink composition described herein, surfactants can interact with the particulate material, rheology modifier, and/or polymeric dispersant in a way that can reduce viscosity, and consequently, reduce the particle suspension stability of the cosmetic ink formulation. Additionally, some surfactants can be irritating to the skin and unacceptable for skin care use.

The cosmetic ink composition can have a surface tension of from about 20 mN/m to about 45 mN/m, alternatively from about 30 mN/m to about 40 mN/m. It was found that if the surface tension of the cosmetic ink composition is above 45 mN/m, the cosmetic ink composition can bead-up on some skin types and may not provide acceptable wetting and/or durability. If the cosmetic ink composition beads-up too much on the skin, the drops can shrink in size when they dry, impacting the droplet deposition pattern and the ability of the cosmetic ink composition to cover skin imperfections. In addition, beading of the cosmetic ink composition on the skin can increase the drying rate, which can cause smearing if the user does not wait long enough for the composition to dry before touching it. It was found that if the surface tension of the cosmetic ink composition is below 20 mN/m, it may be difficult to print the cosmetic ink composition because it can be harder to refill the chamber through capillary action. In addition, as the surface tension decreases, the Rayleigh instability can increase, resulting in an increase in drop placement error and a decrease in drop placement precision.

The cosmetic ink composition can have a first dynamic viscosity of greater than about 500 cP at a shear rate of 0.1 sec−1 measured at 25° C. and a second dynamic viscosity of less than about 100 cP at a shear rate of 1,000 sec−1 measured at 25° C. The cosmetic ink composition can have a first dynamic viscosity of from about 500 cP to about 10,000 cP at a shear rate of 0.1 sec−1 at 25° C., alternatively from about 1,100 cP to about 8,000 cP, alternatively from about 1,600 cP to about 6,000 cP, alternatively from about 2,000 cP to about 5,000 cP. The cosmetic ink composition can have a second dynamic viscosity of from about 10 cP to about 100 cP at a shear rate of 1,000 sec−1 at 25° C., alternatively from about 20 to about 80 cP. Viscosity can be measured according to the Viscosity Test Method described hereinafter. One advantage to having a first and second dynamic viscosity in this range is that at high shear rate, the cosmetic ink composition can drop to a viscosity that is similar to Newtonian inks, yet can still maintain a viscosity sufficient to suspend the particles when not printing.

Without being limited by theory, it is believed that a shear rate of 0.1 sec−1 can be representative of storage conditions, while a shear rate of 1,000 sec−1 can be representative of printing conditions.

The cosmetic ink composition can have a first dynamic viscosity measured at a shear rate of 0.1 sec−1 at 25° C. that is about 70% higher than the second dynamic viscosity of the cosmetic ink composition when measured at a shear rate of 1,000 sec−1 at 25° C., alternatively about 80% higher, alternatively about 90% higher, alternatively about 95% higher. The cosmetic ink composition can have a first dynamic viscosity measured at a shear rate of 0.1 sec−1 at 25° C. that is about 25 times greater than the second dynamic viscosity of the cosmetic ink composition when measured at a shear rate of 1,000 sec−1 at 25° C., alternatively about 35 times greater, alternatively about 50 times greater, alternatively about 80 times greater.

The cosmetic ink composition can have temperature dependent viscosity. Lower viscosity was observed at a shear rate of 1000 sec−1 at an elevated temperature of about 70° C.

The cosmetic ink composition can have a storage modulus (G′) of from about 2 to about 10, alternatively from about 3 to about 8, alternatively from about 4 to about 6. Without being limited by theory, it is believed that if the G′ of the cosmetic ink composition is greater than about 10, the decap or start up after idle time in the printhead may be difficult without intervention because the composition is too elastic. Storage modulus can be measured according to the Oscillatory Strain Sweep Method described hereafter.

The cosmetic ink composition can have a loss modulus (G″) of from about 1 to about 5, alternatively from about 1.8 to about 4, alternatively from about 2 to about 3. Loss modulus can be measured according to the Oscillatory Strain Sweep Method described hereafter.

The ratio of loss modulus to storage modulus, or tan(delta), is a useful representation of the extent of elasticity in a fluid. In this case, it can be a measure of the intrinsic stability of the cosmetic ink composition. When G″ is higher than G′, tan(delta) is greater than about 1 and indicates a viscous dominant fluid behavior. When G′ is higher than G″, tan(delta) is less than about 1 and indicates an elastic dominant fluid behavior.

The cosmetic ink composition can have a tan(delta) of about 1. Alternatively, the cosmetic ink composition can have a tan(delta) of less than about 1, preferably less than about 0.6. Without being limited by theory it is believed that when the tan(delta) is less than about 0.6, particle settling can be minimized and/or prevented. The cosmetic ink composition can have a tan(delta) of from about 0.2 to about 1, alternatively from about 0.4 to about 0.6.

The cosmetic ink composition can have a zeta potential of about negative 20 or less, alternatively about negative 30 or less, alternatively greater than about positive 20, alternatively greater than about positive 30. The cosmetic ink composition can have a zeta potential of about negative 20 or less, or greater than about positive 20. One advantage to having a zeta potential in this range is that the surface charge of the particles can be increased, thus preventing agglomeration of the particles. Zeta potential can be measured according to the Zeta Potential Test Method described hereafter.

The cosmetic ink composition can have a neat pH of greater than about 7.5. The cosmetic ink composition can have a neat pH of about 7.5 to about 9.0, alternatively from about 7.5 to about 8.5. Without being limited by theory, it is believed that at a pH lower than about 7.5, syneresis can occur at a faster rate. It is believed that at a lower pH, the equilibrium between the carboxylic acid and carboxylate salts of the rheology modifier can be pushed toward the protonated acid and therefore are not available to suspend the particles. It is believed that as the pH increases, the larger the negative zeta potential becomes, thus preventing agglomeration of the particles. The cosmetic ink composition can comprise a buffering agent for adjusting the pH conditions. The buffering agent can be any basic excipient. In one aspect, the buffering agent can be a strong base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and mixtures thereof. The neat pH of the cosmetic ink composition can be measured by standard methodology known to those skilled in the art.

The cosmetic ink composition can have an opacity of at least 0.2. In one aspect, the cosmetic ink composition can comprise an opacity of from about 0.2 to about 1, alternatively from about 0.25 to about 0.8, alternatively from about 0.3 to about 0.5.

The cosmetic ink composition can be substantially free of particle settling. Substantially free of particle settling can mean that the variation between the weight % solids of the top and bottom of a sample of the cosmetic ink composition is less than 5% at ambient conditions at 4 days after formulation, alternatively less than about 3%, alternatively less than about 1%. Particle settling can be measured according to the Particle Settling Test Method described hereafter.

The cosmetic ink composition can be substantially free of particle agglomeration. Substantially free of particle agglomeration can mean that the cosmetic ink composition exhibits less than about 25 nm of particle growth per month at ambient conditions, alternatively less than about 15 nm, alternatively less than about 10 nm. The rate of agglomeration can be determined by measuring particle size according to the Particle Size Distribution method described hereafter over a period of time.

The cosmetic ink composition can have less than about 10% separation at 11 days after formulation at 25° C., alternatively less than about 5%, alternatively less than about 2%, alternatively less than about 1%. In one aspect, the cosmetic ink composition can have less than about 4 mm of separation at 11 days after formulation at 25° C., alternatively less than about 2 mm, alternatively less than about 1 mm, alternatively less than about 0.50 mm. Separation can be measured according to the Separation Test Method described hereafter.

The cosmetic ink composition can have a shelf-life of about 1 month, alternatively about 3 months, alternatively about 6 months, alternatively about 12 months, alternatively about 18 months, alternatively about 24 months. As used herein, “shelf-life” means the amount of time the particles can remain uniformly suspended in the cosmetic ink composition at ambient conditions without the need for shaking or agitation.

The cosmetic ink compositions may further comprise a humectant as a carrier or chassis for the other components in the cosmetic ink composition. In one aspect, suitable humectants can include polyalkylene glycols and their derivatives. In one aspect, an exemplary class of humectants can include polyhydric alcohols with three or more hydroxyl groups. Suitable polyhydric alcohols can include propylene glycol; sorbitol; hydroxypropyl sorbitol; erythritol; threitol; pentaerythritol; xylitol; glucitol; mannitol; hexane triol (e.g., 1,2,6-hexanetriol); glycerin; ethoxylated glycerine; propoxylated glycerine; and mixtures thereof. In one aspect, the humectant is propylene glycol.

Other suitable humectants can include sodium 2-pyrrolidone-5-carboxylate; guanidine; glycolic acid and glycolate salts (e.g., ammonium and quaternary alkyl ammonium); lactic acid and lactate salts (e.g., ammonium and quaternary alkyl ammonium); hyaluronic acid and derivatives thereof (e.g., salt derivatives such as sodium hyaluronate); urea; sodium pyroglutamate, water-soluble glyceryl poly(meth)acrylate lubricants (such as Hispagel®, available from BASF, Ludwigshafen, Germany); and mixtures thereof.

The cosmetic ink composition can comprise from about 1 to about 40 active wt % humectant, alternatively from about 5 to about 35 active wt %, alternatively from about 10 to about 30 active wt %, alternatively from about 15 to about 25 active wt %. Alternatively, the cosmetic ink composition can comprise from about 20 to about 30 active wt % humectant.

Without being limited by theory, it is believed that at a level of about 20 active wt % or more, the humectant can help prevent drying and/or clogging of the nozzles and/or cartridge when the cosmetic ink composition is not being printed. In one aspect, the level of humectant is less than about 30 active wt % to promote fast dry times of the cosmetic ink composition on the skin.

The cosmetic ink composition can be delivered alone or in the presence of a dermatologically-acceptable carrier. The phrase “dermatologically-acceptable carrier”, as used herein, means that the carrier is suitable for topical application to a keratinous tissue, has good aesthetic properties, is compatible with any additional components of the cosmetic ink composition, and/or will not cause any untoward safety or toxicity concerns. In one aspect, the cosmetic ink composition is safe for use on skin. In one aspect, the cosmetic ink composition does not comprise alkyds, celluloses, formaldehydes, phenolics, ketones, rubber resins, and combinations thereof because such ingredients may not be compatible with use on human skin. In one aspect, the cosmetic ink composition can be hypoallergenic. Water is by far the most common carrier, and is typically used in combination with other carriers. The carrier can be in a wide variety of forms. Non-limiting examples include simple solutions (water or oil based) or emulsions. The dermatologically acceptable carrier can be in the form of an emulsion. Emulsion may be generally classified as having a continuous aqueous phase (e.g., oil-in-water and water-in-oil-in-water) or a continuous oil phase (e.g., water-in-oil and oil-in-water-in-oil). The oil phase may comprise silicone oils, non-silicone oils such as hydrocarbon oils, esters, ethers, and the like, and mixtures thereof. For example, emulsion carriers can include, but are not limited to, continuous water phase emulsions such as silicone-in-water, oil-in-water, and water-in-oil-in-water emulsion and continuous oil phase emulsions such as water-in-oil and water-in-silicone emulsions, and oil-in-water-in-silicone emulsions.

The cosmetic ink composition can comprise water, preferably deionized water. The cosmetic ink composition can comprise from about 40% to about 75% water, by weight of the cosmetic ink composition, alternatively from about 55% to about 70%, alternatively from about 60% to about 68%.

Additionally, the cosmetic ink composition can optionally include anti-fungal and/or anti-bacterial components. Examples of anti-fungal and/or anti-bacterial components can include isothiazolinone such as methylisothiazolinone and methylchloroisothiazolinone.

The cosmetic ink composition may comprise a safe and effective amount of one or more skin care actives (“active”) useful for regulating and/or improving the skin. “Safe and effective amount” means an amount of a compound or composition sufficient to induce a positive benefit but low enough to avoid serious side effects (i.e., provides a reasonable benefit to risk ratio within the judgment of a skilled artisan). A safe and effective amount of an active can be from about 1×10−6 to about 25%, alternatively from about 0.0001 to about 20%, alternatively from about 0.01 to about 10%, alternatively from about 0.1 to about 5%, alternatively from about 0.2 to about 2%, all by weight of the cosmetic ink composition.

Suitable skin care actives include, but are not limited to, vitamins (e.g., B3 compounds such as niacinamide, niacinnicotinic acid, and tocopheryl nicotinate; B5 compounds such as panthenol; vitamin A compounds and natural and/or synthetic analogs of Vitamin A, including retinoids, retinol, retinyl acetate, retinyl palmitate, retinoic acid, retinaldehyde, retinyl propionate, and carotenoids (pro-vitamin A); vitamin E compounds, or tocopherol, including tocopherol sorbate and tocopherol acetate; vitamin C compounds, including ascorbate, ascorbyl esters of fatty acids, and ascorbic acid derivatives such as magnesium ascorbyl phosphate and sodium ascorbyl phosphate; ascorbyl glucoside; and ascorbyl sorbate); peptides (e.g., peptides containing ten or fewer amino acids, their derivatives, isomers, and complexes with other species such as metal ions); sugar amines (e.g., N-acetyl-glucosamine); sunscreens; oil control agents; tanning actives; anti-acne actives; desquamation actives; anti-cellulite actives; chelating agents; skin lightening agents; flavonoids; protease inhibitors (e.g., hexamidine and derivatives); non-vitamin antioxidants and radical scavengers; salicylic acid; hair growth regulators; anti-wrinkle actives; anti-atrophy actives; minerals; phytosterols and/or plant hormones; tyrosinase inhibitors; N-acyl amino acid compounds; inositol; moisturizers; plant extracts; and derivatives of any of the aforementioned actives; and combinations thereof. The term “derivative” as used herein refers to structures which are not shown but which one skilled in the art would understand are variations of the basic compound. For example, removing a hydrogen atom from benzene and replacing it with a methyl group.

In one aspect, the cosmetic ink composition can comprise peroxide, including hydrogen peroxide and/or benzoyl peroxide.

In one aspect, the cosmetic ink composition can comprise a skin care active selected from the group consisting of niacinamide, inositol, and combinations thereof.

In one aspect, the cosmetic ink composition is substantially free of latex polymer binders and/or a film forming polymers. In one aspect, the cosmetic ink composition comprises less than about 10% latex polymer binders and/or film forming polymers, alternatively less than about 1%, alternatively less than about 0.1%. Without being limited by theory, it is believed that latex polymer binders and/or film forming polymers can make printing difficult because these polymers can solidify after evaporation and irreversibly plug the nozzles.

In one aspect, the cosmetic ink composition can comprise from about 10% to about 30% solids.

In one aspect, the cosmetic ink composition comprises less than 40% solids. Without being limited by theory, it is believed that at a solids level of greater than 40%, such as in prepaints or paints, printing can be difficult because a high level of solids may lead to irreversible nozzle clogging.

In one aspect, the cosmetic ink composition can be removeable with water, alternatively with soap and water.

Personal Care Device

In one aspect, the cosmetic ink composition described herein can be applied to the skin using a hand-held personal care device. An exemplary personal care device can analyze the skin, identify skin imperfections, and deposit the cosmetic ink composition onto the identified skin imperfection in order to hide and/or camouflage the skin imperfection.

In one aspect, the personal care device can comprise a sensor configured to take at least one image of skin and a processor configured to calculate the average background lightness value of the image on a grey scale (lightness value on a grey scale is herein referred to as “L value”). Further, from the same image, a local L value can be calculated for individual pixels or a group of pixels. The processor can then compare the local L value to the background L value to identify skin imperfections.

When a skin imperfection is identified, the processor can activate one or more nozzles to fire and dispense the cosmetic ink composition onto the skin imperfection.

A skin imperfection is an area of skin where the absolute value of the difference between a local L value and the background L, this difference being defined as the measured delta L (“ALM”), is greater than a predetermined set delta L (“ALs”). The background L can be preset or calculated anywhere within the image. The image can be taken where the nozzles will fire the cosmetic ink composition. The background L can be the arithmetic average, median, or mean of a plurality of local Ls, which means the calculation can include all of the local Ls in the image, or a subset thereof.

FIG. 1 shows an exploded view of personal care device 40. Physical spacer 42 of personal care device 40 is directly above skin surface 18. Physical spacer 42 has a set, predetermined height a such that when it contacts skin surface 18, the mechanical and electrical elements are all at a known distance from skin surface 18. In one aspect, the height a is from about 1 mm to about 20 mm, alternatively from about 3 mm to about 15 mm, alternatively from about 4 mm to about 10 mm.

The mechanical and electrical elements associated with personal care device 40 can include, but are not limited to, light 44, sensor 46, nozzle array 20 which is embedded on cartridge die 57 which is attached to cartridge 52. Cartridge die 57 can be made of silicon, glass, machinable glass ceramic, sapphire, alumina, printed wiring board substrates (for example, Liquid Crystal Polymer, polyimide etc.) within which nozzle array 20 can be formed. Nozzle array 20 can be in a linear configuration, multiple rows, off-set, sine wave, curved, circular, saw tooth arrangements, and combinations thereof. All of these elements can be enclosed within optional apparatus housing 41.

Light 44 can illuminate the area of skin surface 18 within physical spacer 42 such that sensor 46 has relatively constant illumination. Background lighting can affect sensor 46 as portions of physical spacer 42 lift off skin surface 18 and allow background light in and the illumination from light 44 to escape. Small deviations in illumination can be corrected for provided light 44 provides a relatively constant background illumination. In one aspect, physical spacer 42 can be opaque. Light 44 can be a LED, incandescent light, neon bulb based, or any other commercially available source of illumination. Light 44 can have constant illumination or adjustable illumination. For example, an adjustable light source might be useful if the background illumination is excessively bright or dark.

Sensor 46 can be any component that is capable of obtaining a visual property of an area of skin surface. Non-limiting examples of sensors can include optical sensors, image capture devices, spectrophotometers, photonic measuring devices for wavelengths within the visible spectrum as well as those wavelengths above and below the visible spectrum which could measure sub-surface features, and combinations thereof. The image capture device can be any of a variety of commercially available devices such as a simple camera or a digital cmos camera chip. In one aspect, the image capture device can be a camera and the images can be taken or converted to a standard grey scale that is known in the art. It is understood that any numerical scale that measures lightness to darkness can be considered a “grey scale”. Moreover, as used herein, “grey scale” is intended to be a linear scale, or one band, or one visual attribute. For example, one “grey scale” visual attribute could be single wavelength or a narrow wavelength to define a specific visual color. Another example of one “grey scale” visual attribute could be a mix of wavelength numerical values averaged for each pixel making up the image, such as a true black, grey or white image from an RGB mixture.

Sensor 46 can take a measurement of the L value of skin surface 18 and/or an image of skin surface 18 and can send it to processor 50 via image capture line 48 for analysis. The image may be analyzed for local L values, background L values, or both. Grey scale conversion can occur within the analytical processing capabilities of processor 50. The comparison of background L to local L to determine the ΔLM occurs within processor 50, which can be a commercially available programmable chip, or other commercially available processing units.

Processor 50 is generally referred to as a central processing unit (“CPU”). The CPU can be a single programmable chip like those found in consumer electronic devices such as a laptop computer, a cell phone, an electric razor, and the like. The CPU may comprise an Application Specific Integrated Circuit (ASIC), controller, Field Programmable Gate Array (FPGA), integrated circuit, microcontroller, microprocessor, processor, and the like. The CPU may also comprise memory functionality, either internal to the CPU as cache memory, for example Random Access Memory (RAM), Static Random Access Memory (SRAM), and the like, or external to the CPU, for example as Dynamic Random-Access Memory (DRAM), Read Only Memory (ROM), Static RAM, Flash Memory (e.g., Compact Flash or SmartMedia cards), disk drives, Solid State Disk Drives (SSD), or Internet Cloud storage. While it is anticipated that a remote CPU, either tethered to the personal care device or which communicates wirelessly, can be used, a local CPU within the personal care device is exemplified herein.

Images can be taken in sequence or preferably continuously. The image capture device can take images at a speed of at least 4 frames per second, alternatively at least 100 frames per second, alternatively at least 200 frames per second, alternatively at least 600 frames per second.

The CPU can process at a rate of 100 frames per second, alternatively greater than 200 frames per second, alternatively greater than 600 frames per second.

The results of the image analysis, when compared to criteria pre-programmed into processor 50, may result in a desired treatment of skin surface 18. For instance, when the calculated ΔLM exceeds the pre-determined ALs, a signal is sent from processor 50 to cartridge 52, via cartridge line 51, to fire one or more nozzles 21 in nozzle array 20 and dispense the cosmetic ink composition.

Power for cartridge 52, light 44, sensor 46, processor 50, and other mechanical and electrical elements that might be present can be supplied by power element 54 via one or more power lines 55.

Power element 54 can be turned off and on, which in turn turns personal care device 40 off and on, via power switch 56 which can be located anywhere on personal care device 40, but is shown here on device cover 58. Power element 54 may include energy storage functionality via a battery, a rechargeable battery, an electrochemical capacitor, a double-layer capacitor, a supercapacitor, a hybrid battery-capacitor system, and combinations thereof.

FIG. 2 shows an exploded view of cartridge 52 comprising cartridge cap 62 and cartridge body 64. Cartridge body 64 can include standpipe 66 which is typically enclosed within cartridge body 64 and defines nozzle outlet 68. Optional filter 70 can help keep excessively large particles, and other debris out of nozzle array 20. Filter 70 and nozzle array 20 can be on opposite sides of nozzle outlet 68. Cosmetic ink composition 74 can be contained within cartridge body 64. Foam core 72 can at least partially fill cartridge 64 and helps to regulate back pressure of cosmetic ink composition 74. Back pressure can be regulated via bladders (not shown) and other methods known to the art. Foam core 72 shown here is just one example of how to help regulate the flow of the cosmetic ink composition 74 to standpipe 66 through filter 70 and into nozzle array 20. Connector 78 can provide the electrical power and signal to nozzle array 20. Cosmetic ink composition 74 may be ejected from the cartridge 52 by piezoelectric means, thermal means, mechanical pumping means, or a combination of these.

An exemplary cartridge for use herein can include cartridges described in Patent Application US 2002/0167566.

There is no technical difference between an image used for background L values and those used for local L values, the difference is in the analysis of the image. Hence, the images are continually sent to the processor to calculate the L values and ΔLM values. By “sent” it is understood, that preferably at least 4 bits of data per pixel are transferred for each image, and preferably, this 4-bit (or more) packet of data is used in the calculation of each local L value.

It is understood that the background L can be calculated once in a treatment period and that value can be reused throughout the treatment period. Alternatively, it can be continually recalculated as long as the treatment process goes on. Moreover, there can be pre-programmed triggers to initiate a recalculation of the background L. Also, the background L may be retrieved from the processor memory to be used for the current background L.

When the ΔLM exceeds the predetermined value, the cosmetic ink composition can be deposited onto at least a portion of the skin imperfection. In particular, the cosmetic ink composition can be deposited via an array of nozzles and the local L can be calculated along the length of, and in the firing range of, the array of nozzles. An individual nozzle may be fired to deposit the cosmetic ink composition, or multiple nozzles can be fired at the same time. The number of nozzles fired along the array of nozzles can be adjusted based on the size of the ΔLM and the size of the skin imperfection. Furthermore, the frequency of nozzle firing can be adjusted based on the ΔLM, with more droplets being fired in succession in response to larger ΔLM values.

The personal care device may deposit the cosmetic ink composition in droplets having an average diameter of from about from about 0.1 μm to about 60 μm, alternatively from about 1 μm to about 50 μm, alternatively from about 5 μm to about 40 μm. Preferably, the cosmetic ink composition can be applied to the skin imperfection in a discontinuous pattern of discrete droplets.

The cosmetic ink composition can be printed from a cartridge having a micro-electro-mechanical system (MEMS) that is different from typical consumer printing applications. It is known that the typical chamber height and nozzle plate thicknesses are from about 25 to about 50 μm since typical printing inks have a viscosity of less than about 10 cP. In one aspect, the cartridge can comprise a chamber height and nozzle plate thicknesses of from about 10 to about 20 μm, preferably from about 12 to about 17 μm. Without being limited by theory it is believed that the shorter chamber height and plate thickness can help minimize viscous loss. In addition, most consumer printing applications are optimized for printing at 10 kHz or more, so ink formulas and microfluidics are designed to achieve rapid refill. However, operating the cosmetic ink composition described herein at this frequency range can result in streaming and/or de-priming due to gulping of air.

The cosmetic ink composition can be printed using the following start-up sequence: heating the substrate to about 60° C. for less than about 600 ms, firing the nozzles in a burst of from about 100 to about 500 fires at a frequency of about 300 to about 1000 Hz, and then maintaining the low shear condition with continuous 4 Hz firing. While it is possible the nozzles will start up with different algorithms, it is likely that the cosmetic ink composition would not be transitioned from its viscous at-rest state to a flowing state.

Also described herein is a method for depositing the cosmetic ink composition onto skin. The method for depositing a cosmetic ink composition onto skin can comprise the steps of:

    • a. providing a personal care device comprising one or more nozzles and a cartridge operatively associated with the one or more nozzles, wherein a cosmetic ink composition is disposed within the cartridge; and
    • b. depositing the cosmetic ink composition onto a portion of skin, wherein the cosmetic ink composition is deposited in a discontinuous droplet pattern.

More specifically, a method for depositing a cosmetic ink composition onto skin can comprise the steps of:

    • a. providing a personal care device comprising an array of nozzles;
    • b. providing a background lightness (L) value;
    • c. obtaining a treatment image of skin and calculating at least one local L value of individual pixels or group of pixels within the treatment image;
    • d. comparing the local L value to the background L value;
    • e. identifying a skin deviation where the absolute value of the difference between the local L value and the background L value is greater than a predetermined set delta L value; and treating the skin deviation with a cosmetic ink composition;
      wherein the ink composition comprises a particulate material having a Particle Size Distribution D50 of about 100 nm to about 2,000 nm; a polymeric dispersant, preferably having a weight average molecular weight of less than about 5,000 daltons; a rheology modifier, wherein the rheology modifier is selected from the group consisting of alkali swellable emulsion polymers, hydrophobically modified alkali swellable emulsion polymers, and combinations thereof, and a surface tension modifier, wherein the surface tension modifier is selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof.

Examples and Data

The following data and examples, including comparative examples, are provided to help illustrate cosmetic ink compositions described herein. The exemplified compositions are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. All parts, percentages, and ratios herein are by weight unless otherwise specified.

Surface Tension Study

Formulas were prepared to assess the impact of surface tension modifiers on the surface tension and stability of the cosmetic ink composition. Examples 1-6 were made according to the procedure described hereafter. Example 1 is a control containing no surface tension modifier. Examples 2, 3, and 4 illustrate a cosmetic ink composition containing the surface tension modifier 1,2-Hexanediol/1,2-Octanediol, ethanol, and farnesol, respectively. Examples 5 and 6 are comparative examples containing a C12/C14 amine oxide or undecylenoyl phenylalanine, respectively, as the surface tension modifier.

Examples 1-6 were made according to the following formulas. Weight percent is shown as added.

TABLE 1 Control 1 2 3 4 5 6 Phase Description wt % wt % wt % wt % wt % wt % A 75 wt % TiO2 Slurry 15.82 15.82 15.82 15.82 15.82 15.82 (WPG75PFSP)1 A 45 wt % Iron Oxide Slurry 2.31 2.31 2.31 2.31 2.31 2.31 (WPG45GYSP)1 A 45 wt % Iron Oxide Slurry 0.20 0.20 0.20 0.20 0.20 0.20 WPG45SIRSP)1 B Deionized Water 48.07 47.07 43.07 47.57 45.27 49.07 B PuraGuard ™ Propylene Glycol2 23.00 23.00 23.00 23.00 23.00 23.00 B Niacinamide3 5.00 5.00 5.00 5.00 5.00 0 B 5 wt % Darvan ® 811D4 in water 2.60 2.60 2.60 2.60 2.60 2.60 B 15 wt % ACULYN™ Excel5 in 3.00 3.00 3.00 3.00 3.00 3.00 water C Symdiol ® 686 0 1.00 0 0 0 0 C Ethanol7 0 0 5.00 0 0 0 C Farnesol8 0 0 0 0.50 0 0 C C12/C14 Amine Oxide9 0 0 0 0 2.80 0 C 5 wt % Undecylenoyl 0 0 0 0 0 4.00 Phenylalaninel10 1Supplied by KOBO Products Inc (South Plainfield, NJ). 2Available from The Dow Chemical Company (Lake Zurich, IL). 3Available from Vertellus Agriculture & Nutrition (Indianapolis, IN). 4Available from Ashland Specialty Chemical (Wilmington, DE). 5Polyacrylate available from The Dow Chemical Company (Lake Zurich, IL). 61,2-Hexanediol, 1,2-Octanediol available from Symrise AG (Branchburg, NJ). 7Available from Aaper Alcohol & Chemical Co (Shelbyville, KY). 8Available from Symrise AG (Branchburg, NJ). 9Available from P&G (Kansas City, KS). 10A 5 wt % mixture of undecylenoyl phenylalanine (available from Seppic, Fairfield, NJ) was made by adding undecylenoyl phenylalanine to DI water and adjusting the pH to >7 with AMP-Ultra ® PC 2000 (available from Angus Chemical, Buffalo Grove, IL).

The surface tension and rheology were measured initially and then samples were stored in sealed glass jars at 50° C. until stability measurements were performed. The table below shows the surface tension, viscosity, G′, G″, tan(delta), and separation for each example. Viscosity was measured according to the Viscosity Test Method described hereafter. Tan(delta) was calculated by using the storage modulus and loss modulus measured according to the Oscillatory Strain Sweep Method described hereafter. Separation was measured according to the Separation Test Method described hereafter. Separation is recorded in Table 2 as the mm of separation after 15 days at 50° C.

TABLE 2 Separation Surface (mm Tension separation Surface Modifier Surface Viscosity Viscosity at 15 Tension wt % Tension (cP, (cP, tan days, Ex Modifier (active) (mN/m) 0.1 s−1) 1000 s−1) G′ G″ (delta) 50° C.) 1 None 0 50.0 3180 43 4.53 2.09 0.46 0 (Control) 2 Symdiol ® 68 1.00 40.0 3130 44 4.26 2.05 0.48 0 3 Ethanol 5.00 45.4 3920 52 5.16 2.51 0.48 0 4 Farnesol 0.50 39.0 3480 50 5.40 2.78 0.52 0 5 C12/C14 0.145 37.7 2410 44 3.50 1.77 0.51 1.8 Amine Oxide 6 Undecylenoyl 0.20 42.0 1600 28 1.67 1.07 0.64 25.7 Phenylalanine

It was surprisingly found that some surface tension modifiers, while able to lower the surface tension of the cosmetic ink composition, disrupted stability by lowering the viscosity such that significant separation occurred, demonstrating the insufficient internal structure to suspend the particles. Without being bound by theory, it is believed that humectants like propylene glycol are too hydrophilic to sufficiently reduce surface tension.

Example 1 (Control), which contained no surface tension modifier, had a surface tension of 50 mN/m. Although Example 1 was able to build a viscosity sufficient to suspend the particles, it is believed that a cosmetic ink composition having a surface tension of 50 mN/m may not be able to wet a wide range of skin types and consequently print durability and/or coverage will be poor. It is desirable to have a surface tension of less than about 45 mN/m while maintaining a viscosity such that stability is maximized without the need for agitation.

When Symdiol® 68 (Example 2), a C8 diol, and farnesol, a C15 alcohol, (Example 4) were added, the surface tension of the sample decreased to 40 mN/m or less while the viscosity increased as compared to the control. In addition, the tan(delta) of Examples 2 and 4 were 0.48 and 0.52, respectively, demonstrating the viscoelastic properties were suitable for printing.

When ethanol, a C2 alcohol, was added (Example 3), the surface tension of the sample decreased to 45.4 mN/m while the viscosity increased as compared to control. In addition, the tan(delta) of Example 3 was 0.48, demonstrating the viscoelastic properties were suitable for printing. Because of the volatility of ethanol, it is believed the surface tension may increase over time.

When a C12/C14 amine oxide was added (Example 5), the surface tension decreased to 37.7 mN/m, however, the viscosity also decreased as compared to control. Similarly, when undecylenoyl phenylalanine was added (Example 6), the surface tension decreased to 42.0 mN/m, but the viscosity also decreased as compared to control. Not wishing to be bound by theory, it is believed that the C12/C14 amine oxide and undecylenoyl phenylalanine disrupted the weak colloidal gel structure of the cosmetic ink composition, resulting in the decrease in viscosity. In addition, Examples 6 had a tan(delta) of 0.64 and a high level of separation at 50° C. was observed.

Examples 1-6 were Made According to the Following Procedure

First, the ingredients of Phase A were combined in an appropriate premix container and mixed for 30 minutes. The ingredients of Phase B were added into a main container. Phase B was mixed using a mixer with a propeller blade, such as a digital Eurostar 400® available from IKA® (Staufen im Breisgau, Germany) or equivalent, at low speed until the mixture was homogenous. The pH of the Phase B mixture was measured. Then, the contents of the premix container were transferred into the main container and mixed for 30 minutes. Approximately 10% of the water was withheld from Phase B and was used to wash the premix container and then added to the main container while mixing. Phase C was added to the main container. The mixing speed was increased to high speed and mixing continued for 10 minutes. Phase D was then added dropwise to the main container and the pH was maintained between 7.5-8.5 by adding 20% KOH. Homogeneity was ensured and the mixture was poured into a container, labeled, and stored at ambient conditions before use.

Surface Tension Method

Surface tension is measured according to ASTM 1331-14 (Published January 2015) using an EZ-Pi tensiometer (Kibron, Parrish, FL), or equivalent. The instrument is calibrated according to the manufacturer instructions using DI water. Measurements are taken and values are reported in mN/m.

Viscosity Test Method

Viscosity is measured using a rheometer as a function of shear rate. A suitable rheometer can include an Ares M (available from TA Instruments, New Castle, DE), or equivalent. First, the samples and standards are equilibrated at room temperature prior to analysis. A 50 mm, 2 degree, cone and plate is zeroed prior to testing. While the sample is at 25° C.±0.5° C., the sample is tested. A shear sweep measurement is performed over a range of 0.1-1000 s−1 to determine the shear thinning properties and viscosity at different shear rates.

Oscillatory Strain Sweep Method

Oscillatory strain sweep is measured using a rheometer (such as an ARES-G2 available from TA Instruments, New Castle, DE), or equivalent.

The samples and standards are allowed to equilibrate at ambient conditions prior to analysis. The rheometer is calibrated as disclosed in the operator's manual. The oscillatory strain sweep measurement is performed at a fixed angular frequency of 6.28 rad/s over a strain range of 0.0001-1 using a 40 mm 316SST (APS heat break) parallel plate at 25° C., with a 0.05 mm gap, to determine the storage and loss moduli.

Particle Size Distribution Method

The particle size distribution is determined using a laser scattering particle size distribution analyzer. A suitable laser scattering particle size distribution analyzer can include a Horiba LA-950V2 (available from Horiba, Ltd., Kyoto, Japan). In this method, the principles of Mie and Fraunhofer scattering theories are used to calculate the size and distribution of particles suspended in a liquid. Results are normally displayed on a volume basis. The application of this method to pigments has been developed using a flow cell procedure.

Samples are prepared by vortexing for 30 seconds with a Vortex Genie 2 to ensure there is no residue in the bottom of the sample vial. 200 mL of deionized (DI) water is added into the instrument reservoir and analyzed as a blank sample. A disposable micro pipet is used to dispense enough sample into the DI water in the instrument until the Transmittance is reduced from 100 down to 90±2%, approximately 250 μL. Results are reported as D50 or D90.

Particle Settling Test Method

Particle settling is measured as follows. An aluminum dish is weighed to determine the dish weight. A 1 gram aliquot of the sample from the top, middle, or bottom of the sample vial is added to the dish and weighed to determine the wet weight. “Top” means the surface of the sample in the vial. “Middle” means the middle of the vial. “Bottom” means the bottom of the vial. The dish with the sample aliquot is placed in an oven at 100° C. for one hour to evaporate the volatiles. The dish is removed and weighed again to get a dry weight. The weight % solids is calculated by the following equation: (dry weight-dish weight)/(wet weight-dish weight).

Zeta Potential Test Method

Zeta potential is measured using a Zeta potential analyzer such as a NanoBrook ZetaPALS Potential Analyzer available from Brookhaven Instruments Corporation, Holtsville, NY, or equivalent.

Zeta potential test samples are prepared by diluting the sample to 0.1 g/ml into deionized water. Zeta potential is measured on a Zeta potential analyzer using the Smoluchowski Zeta potential model with 5 runs and 10 cycles. After running a standard (BIZR3), the cells of the Zeta potential analyzer are loaded with 1 ml of test sample. Zeta potential is measured as a function of pH.

Separation Test Method

Separation is measured by filing an 8-dram (1 oz., 25 mm×95 mm) screw cap glass vial to a height of 55 mm with the sample composition (as measured from the bottom of the vial to the top of the liquid composition). The vials are sealed and are placed in controlled temperature chambers. The vials are held in static storage until measurements are performed. At each time point, the vial is carefully removed from the chamber without vigorous or prolonged agitation and observed for any visual signs of separation and the type of separation is noted as syneresis or settling. The amount of separation is determined by measuring the mm of clear fluid at the top of the sample with a digital caliper.

Combinations

    • A. A cosmetic ink composition comprising: from 1 to 45 active wt % of a particulate material having a Particle Size Distribution D50 of 100 nm to 2,000 nm; a rheology modifier, wherein the rheology modifier is selected from the group consisting of an alkali swellable emulsion polymer, a hydrophobically modified alkali swellable emulsion polymer, and combinations thereof; a polymeric dispersant; and a surface tension modifier selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof.
    • B. The cosmetic ink composition of paragraph A, wherein the surface tension modifier is selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, farnesol, benzyl alcohol, phenyl ethyl alcohol, phenoxyethanol, 2-phenylphenol, methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, isobutyl 4-hydroxybenzoate, chloroxylenol, 2-methyl 5-cyclohexypentanol, triclosan, 1,2-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 1,2-octanediol, 1,8-octanediol, 2-methyl 5-cyclohexypentanol, 1,2-decanediol, 3-[(2-ethylhexyl)oxy]-1,2-propanediol, and mixtures thereof.
    • C. The cosmetic ink composition of paragraph A, wherein the surface tension modifier is selected from the group consisting of 1,2-hexanediol, 1,2-octanediol, ethanol, farnesol, and mixtures thereof.
    • D. The cosmetic ink composition of any of the preceding paragraphs, wherein the cosmetic ink composition has a tan(delta) of less than 0.60, preferably less than 0.55, even more preferably less than 0.50.
    • E. The cosmetic ink composition of any of the preceding paragraphs wherein the polymeric dispersant has a weight average molecular weight of less than 5,000 daltons, preferably from 2,000 to 5,000 daltons, more preferably from 2,500 to 4,000 daltons.
    • F. The cosmetic ink composition of any of the preceding paragraphs wherein the cosmetic ink composition comprises greater than 0.30 active wt % rheology modifier.
    • G. The cosmetic ink composition of any of the preceding paragraphs comprising from 0.1 to 5 active wt % of the surface tension modifier, preferably from 0.5 to 3 active wt %, more preferably 1 to 2 active wt %.
    • H. The cosmetic ink composition of any of the preceding paragraphs wherein the particulate material has a Particle Size Distribution D50 of from 150 nm to 1,000 nm, preferably from 200 nm to 450 nm, most preferably from 200 nm to 350 nm.
    • I. The cosmetic ink composition of any of the preceding paragraphs wherein the particulate material has a Particle Size Distribution D90 of from 700 nm to 900 nm.
    • J. The cosmetic ink composition of any of the preceding paragraphs wherein the particulate material is selected from the group consisting of a pigment, a metal oxide, a colorant, a dye, a clay, and combinations thereof.
    • K. The cosmetic ink composition of any of the preceding paragraphs wherein the rheology modifier is an alkali swellable acrylic polymer emulsion.
    • L. The cosmetic ink composition of any of the preceding paragraphs, wherein the cosmetic ink composition has a surface tension of from 20 mN/m to 45 mN/m, preferably from 30 mN/m to 40 mN/m.
    • M. The cosmetic ink composition of paragraph any of the preceding paragraphs, further comprising one or more skin care actives selected from the group consisting of niacinamide, inositol, and combinations thereof.
    • N. The cosmetic ink composition of any of the preceding paragraphs, further comprising from 20 to 30 active wt % of a humectant.
    • O. The cosmetic ink composition of any of the preceding paragraphs, wherein the cosmetic ink composition has a first dynamic viscosity of 1,100 cP to 10,000 cP at a shear rate of 0.1 sec−1 measured at 25° C., preferably 1,500 cP to 8,000 cP, more preferably from 2,000 cP to 5,000 cP, and a second dynamic viscosity of from 10 to 100 cP at a shear rate of 1,000 sec−1 measured at 25° C., preferably from 20 to 80 cP.
    • P. The cosmetic ink composition of any of the preceding paragraphs wherein the cosmetic ink composition has a neat pH of from 7.5 to 9.0.

Values disclosed herein as ends of ranges are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each numerical range is intended to mean both the recited values and any integers within the range. For example, a range disclosed as “1 to 10” is intended to mean “1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.”

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value.

For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”

Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited.

The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

1. An inkjet cartridge comprising one or more nozzles and a cartridge body that contains a cosmetic ink composition, wherein the cosmetic ink composition comprises:

a. from about 1 to about 45 active wt. % of a particulate material; and
b. a surface tension modifier, wherein the surface tension modifier is selected from the group consisting of C1-C16 alcohols, C5-C18 diols, and mixtures thereof.

2. The inkjet cartridge of claim 1, wherein the inkjet cartridge further comprises a standpipe.

3. The inkjet cartridge of claim 1, wherein the inkjet cartage further comprises a foam core that at least partially fills the cartridge body.

4. The inkjet cartridge of claim 1, wherein the one or more nozzles are arranged in an array.

5. The inkjet cartridge of claim 1, wherein the inkjet cartridge further comprises a connector to provide electrical power to the one or more nozzles.

6. The inkjet cartridge of claim 1, wherein the cosmetic ink composition is ejected from the cartridge by piezoelectric means, thermal means, mechanical pumping means, or a combination thereof.

7. The inkjet cartridge of claim 1, wherein the cosmetic ink comprises from about 0.1 to about 5 active wt % of the surface tension modifier.

8. The inkjet cartridge of claim 7, wherein the cosmetic ink composition further comprises a rheology modifier, wherein the rheology modifier is selected from the group consisting of an alkali swellable emulsion polymer, a hydrophobically modified alkali swellable emulsion polymer, and combinations thereof.

9. The inkjet cartridge of claim 7, wherein the cosmetic ink composition further comprises a rheology modifier, wherein the rheology modifier is selected from the group consisting of a (meth)acrylate polymer, a (meth)acrylate copolymer, and mixtures thereof.

10. The inkjet cartridge of claim 7, wherein the cosmetic ink composition further comprises a polymeric dispersant.

11. The inkjet cartridge of claim 10, wherein the cosmetic ink composition comprises from about 0.01% to about 1 active wt % of the polymeric dispersant.

12. The inkjet cartage of claim 7, wherein the particulate material has a Particle Size Distribution D50 of about 100 nm to about 2,000 nm.

13. The inkjet cartridge of claim 7, wherein the cosmetic ink composition further comprises from about 10 to about 30 active wt % of a humectant.

14. The inkjet cartridge of claim 1, wherein the cosmetic ink composition has a neat pH of from 7.5 to 9.0.

15. The inkjet cartridge of claim 1, wherein the cosmetic ink composition has a dynamic viscosity of from 10 to 100 cP at a shear rate of 1,000 sec−1 measured at 25° C.

16. The inkjet cartridge of claim 15, wherein the cosmetic ink has a second dynamic viscosity of 1,100 cP to 10,000 cP at a shear rate of 0.1 sec−1 measured at 25° C.

17. The inkjet cartridge of claim 1, wherein the particulate material is selected from the group consisting of a pigment, a metal oxide, a colorant, a dye, a clay, and combinations thereof.

18. The inkjet cartridge of claim 1, wherein the cosmetic ink composition has a surface tension of from about 20 mN/m to about 45 mN/m.

19. The inkjet cartridge of claim 1, wherein the cosmetic ink composition further comprises one or more skin care actives selected from the group consisting of niacinamide, inositol, and combinations thereof.

Patent History
Publication number: 20240245589
Type: Application
Filed: Feb 16, 2024
Publication Date: Jul 25, 2024
Inventors: Janette Villalobos LINGOES (Cincinnati, OH), Thomas Elliot RABE (Baltimore, MD), Matthew Joseph LINSER (Cincinnati, OH), Travis Kyle HODGDON (Cincinnati, OH), Ajay SUTHAR (Lexington, KY)
Application Number: 18/443,360
Classifications
International Classification: A61K 8/29 (20060101); A61K 8/06 (20060101); A61K 8/19 (20060101); A61K 8/34 (20060101); A61K 8/49 (20060101); A61K 8/60 (20060101); A61K 8/81 (20060101); A61Q 1/02 (20060101); A61Q 19/00 (20060101); C08L 1/28 (20060101); C08L 33/08 (20060101); C08L 33/26 (20060101); C09D 11/322 (20060101); C09D 11/38 (20060101);