Identifier circuits for generating unique identifiable indicators and techniques for producing same

The present invention provides for safe and reliable electronic circuitry that can be employed in ingestible compositions. The ingestible circuitry of the invention includes a solid support; a conductive element; and an electronic component. Each of the support, conductive element and electronic component are fabricated from an ingestible material. The ingestible circuitry finds use in a variety of different applications, including as components of ingestible identifiers, such as may be found in ingestible event markers, e.g., pharma-informatics enabled pharmaceutical compositions.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Pursuant to 35 U.S.C. §119 (e), this application claims priority to the filing dates of U.S. Provisional Application Ser. Nos. 61/088,355 filed on Aug. 13, 2008, the disclosures of which are herein incorporated by reference.

BACKGROUND

Ingestible devices that include electronic circuitry have been proposed for use in a variety of different medical applications, including both diagnostic and therapeutic applications.

Examples of such ingestible devices are ingestible electronic capsules which collect data as they pass through the body, and transmit the data to an external receiver system. An example of this type of electronic capsule is disclosed in U.S. Pat. No. 5,604,531 Iddan et al., which describes what is called an in vivo video camera. The swallowable capsule includes a camera system and an optical system for imaging an area of interest onto the camera system. The transmitter transmits the video output of the camera system and the reception system receives the transmitted video output. U.S. Pat. No. 7,009,634 also issued to Iddan et al discloses an ingestible imaging device that obtains images from within body lumens or cavities. The electronic circuit components of the device are enclosed by an inert indigestible housing (e.g. glass housing) that passes through the body internally. U.S. Pat. No. 6,800,060 issued to Marshall discloses an ingestible data recorder capsule medical device. The electronic circuits of the disclosed device (e.g. sensor, recorder, etc.) are housed in a capsule made of inert materials, and therefore ingestible and passable through the digestive tract without being consumed by the body.

In these devices, the electronic circuits are protected in a housing or capsule that prevents damage to the device's electronic circuits during the process of ingestion and elimination in the human body.

Recently, U.S. Patent Application Publication No. 2007/0008113 by Spoonhauer et al. disclosed fragile radio frequency identification (RFID) tags for use in drug ingestion monitoring applications. The RFID tags disclosed in this application are simple antenna structures that are configured to break down during transit through the body.

In certain instances, more complex circuitry suitable for use in ingestible devices is needed.

SUMMARY

The present invention provides for robust ingestible circuitry, where the components of the ingestible circuitry are ingestible, and in some instances digestible. As the ingestible circuitry is made up of ingestible, and even digestible, components, the ingestible circuitry results in little, if any, unwanted side effects, even when employed in chronic situations. The ingestible circuitry is particularly suited for use in signal identifiers, e.g., as may be found in ingestible event markers (IEMs), which include pharma-informatics enabled compositions.

Embodiments of ingestible circuitry of the invention include a solid support of an ingestible material, which support has on a surface thereof one or more electronic components. Components that may be present on the surface of the support may vary, and include but are not limited to: logic and/or memory elements, e.g., in the form of an integrated circuit; a power device, e.g., battery, fuel cell or capacitor; an effector, e.g., sensor, stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc. The one or more components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided. All of the components and the support of the ingestible circuitry are ingestible, and in certain instances digestible.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows diagrammatically an ingestible identifier that includes ingestible circuitry in accordance with the invention.

FIGS. 2A to 2D provide views of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.

FIGS. 3A and 3B provide views of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.

FIG. 4 provides a view of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.

FIG. 5 provides a view of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.

FIGS. 6A and 6B provide views of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.

FIGS. 7A to 7B provide views of a bifurcated laminate process employed to fabricate devices according to one embodiment of the invention.

DETAILED DESCRIPTION

The present invention provides for ingestible circuitry, where the components of the circuitry are ingestible, and in some instances digestible. As the ingestible circuitry is made up of ingestible, and even digestible, components, the ingestible circuitry results in little, if any, unwanted side effects, even when employed in chronic situations.

Embodiments of ingestible circuitry of the invention include a solid support of an ingestible material, which support has on a surface thereof one or more electronic components. Components that may be present on the surface of the support may vary, and include but are not limited to: logic and/or memory elements, e.g., in the form of an integrated circuit; a power device, e.g., battery, fuel cell or capacitor; an effector, e.g., sensor, stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc. The one or more components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.

The ingestible circuitry is particularly suited for use in signal identifiers, e.g., as may be found in ingestible event markers and pharma-informatics enabled compositions. One example includes use of the ingestible circuitry in association with a specific pharmaceutical product, such as a pill, to determine when a patient takes the pharmaceutical product. As the pill is consumed, the ingestible circuit is activated and generates a signal that is detected thereby signifying that the pharmaceutical product has been taken by a patient.

Ingestible Circuitry and Fabrication Thereof

As summarized above, the present invention provides ingestible circuitry. Ingestible circuitry of the invention includes a solid support fabricated from an ingestible material, and one or more electronic components displayed on a surface thereof. Where two or more components are present on a given solid support, conductive interconnecting elements are also present that electrically couple the two or more components. A variety of different types of components may be present on the support, as reviewed in greater detail below. In addition, one or more optional elements, such as a protective layer, etc., may be provided.

Ingestible circuitry of the invention can be a standalone unit or it can be incorporated into another structure, e.g., an ingestible identifier, such as may be found in an ingestible event marker, including a pharma-informatics enabled pharmaceutical composition.

As summarized above, circuitry of the invention is ingestible, where the disparate components of the circuitry are fabricated from ingestible materials. In certain embodiments, one or more of the ingestible materials of the circuits are digestible materials. As such, the amounts of the materials are below chronic ingestion limits if the circuitry is present in a device that is going to be ingested chronically. If the circuitry is incorporated into a device that is going to be ingested less frequently, materials may be chosen based on the anticipated dosage schedule.

As reviewed above, elements of the ingestible circuitry of the invention include a solid support, one or more electronic components, and interconnects, among other elements.

The solid support is the structure on which all of the components are present. The solid support is fabricated from an ingestible material, where the material is a dielectric or insulating material. It can be fabricated from a variety of materials. Materials that provide mechanical strength and may be employed as an insoluble component of the solid support include, but are not limited to: Ethyl cellulose (e.g. Hercules Aqualon or Dow Ethocel), cellulose acetate, Agar, Gelatin. Insoluble materials of interest include ethylcellulose, a copolymer of acrylic acid and methacrylic acid esters, having from about 5 to 10% functional quaternary ammonium groups, polyethylene, polyamide, polyvinylchloride, polyvinyl acetate and any mixtures thereof. Fillers, such as, starch, glucose, lactose, inorganic salts such as sodium or potassium chloride, carbonates, bicarbonates, sulfates, nitrates, silicates (e.g., magnesium silicate) and alkali metals phosphates and oxides (e.g., titanium dioxide, magnesium oxide), may also be present. Soluble materials that may be employed, e.g., as disintegrating agents, in the solid support include, but are not limited to: Hydroxypropyl cellulose, hydroxyethylcellulose, carboxymethylcellulose, croscarmellose, hypromellose, hydroxypropyl methyl cellulose, methyl cellulose, Polysaccharides (starch, different sugars); Polyvinyl alcohol; Gums (guar, xanthan, acacia); Alginates (sodium or calcium alginate); povidone; etc. Also of interest are Plasticizing agents, e.g., Dibutyl sebacate, triacetin, triethyl citrate, polyethylene glycol, polyethylene oxide. Soluble materials of interest include proteins, polysaccharides, polyacrylates, hydrogels, polyvinyl alcohol, polyvinyl pyrrolidone, and derivatives of such polymers. In certain embodiments, plasticizers may be present, where plasticizers make it easier to process and modulate the strength so that it is not stiff and brittle. Also of interest are surfactants. Environmentally sensitive materials may also be present in the support, such as environmentally sensitive polymers, e.g., temperature sensitive polymers, ph sensitive polymers (e.g., Polymethacrylates (e.g. Degussa Eudragit®)), oxygen sensitive polymers, enzyme sensitive polymers (e.g., Starch, Chitosan, etc.), that will make it insoluble in certain physiological locations, such as the stomach, and soluble in other physiological locations, such as the intestine. Embodiments of such supports are supports that retain their shape in the stomach and then fall apart upon entry/transit through the intestine. Also present may be foaming agents, e.g., sodium carbonate, swelling agents, e.g., hydrogel polymers, or cross linking agents, e.g., glutaraldehyde. In certain embodiments, the support is fabricated from a foodstuff which has suitable properties. Foodstuffs of interest include, but are not limited to: soy, whey, wheat glutein, rice starch, tapioca starch, rice paper, nori, corn chips, potato, pasta, filo, fruit roll-ups, haw flakes, crackers, gelatin and gummy. The solid supports can be fabricated via any convenient protocol, such as through deposition via a number of methods such as solvent cast, or melt extrusion.

Also present in ingestible circuitry is one or more conductive elements which serve to interconnect two or more distinct components on a surface(s) of the support. In certain embodiments, this conductive element, e.g., interconnect or wire, is a thin layer or strip of a homogenous conductive and ingestible material, such as gold, silver, graphite, titanium, copper, etc. The material making up the conductive element may be any material whose total amount is below chronic ingestion limits (i.e., how often one is ingesting the ingestible device) where the conductivity is within a desired range. Table 1 below provides examples of ranges.

TABLE 1 Resistivity Dimension Metal (Ωm) Length Width Thickness Cu 1.68 × 10−8 1 cm 100 μm 1 μm Mg 4.39 × 10−8 1 cm 100 μm 10 μm  Au 2.21 × 10−8 1 cm 100 μm 100 μm  Ag 1.59 × 10−8 1 cm  10 μm 1 μm Fe 9.61 × 10−8 1 cm 100 μm 0.1 μm  

The conductive elements (i.e., interconnects) can be deposited on a surface of the support to provide interconnection between two or more components as a homogeneous layer, for example a layer of gold. Any convenient deposition protocol may be employed, such as but not limited to: evaporation, plating, electrolysis plating, galvanic deposition, screen or ink jet printing, or other thin layer deposition techniques. Alternatively, a lamination method may be employed, where various elements are positioned as sheets. In yet other embodiments, a decal transfer process may be employed, where each of the distinct elements is on a separate backing layer. The distinct elements are transferred to the solid support, and then the backing layer is removed. With each of the above protocols, a patterning technique may be employed. The choice of patterning technique will depend on the choice of deposition process and the dimensional control required of the final pattern, for example evaporation or plating is very compatible with photo lithography. For laminate protocols, laser patterning might be employed, e.g., where a layer is deposited and the unwanted portions are cut out. In certain embodiments, purely additive techniques, such as ink jet or screen printing, are employed.

Instead of having a conductive element fabricated from a homogenous material, the conductive element can be a heterogenous material that is a paste or an ink. For example, a suspension of a conductive filler of the conductive materials, e.g., gold, silver, graphite, etc., with an ingestible binder material, such as a polymer, a thermoset or thermoplastic polymer, may be employed. This heterogenous material can contain other polymeric components such as plasticizers, surfactants to make the ink and the paste flow better, be more processable etc. In yet other embodiments, the conductive element is an isotropic conductive film, e.g., a film of inert particles, such as of a material like glass, that have been coated with a conductive material, e.g., a metal.

Electrical connection between the conductive element and components on the support may be achieved in a number of different ways. For example, interconnects and various components may be positioned on a surface of the solid support, and a layer of conductive material that covers the disparate components and conductive elements can be deposited in a manner that provides the desired connection. Alternatively, ingestible conductive glues, pastes and adhesives may be employed. In certain embodiments, of interest is the use of a combination of two (or more) glues, where one of the glues provides for desired conductive properties and one of the glues provides mechanical strength. In addition, mechanical attachment protocols such as pressing different components together, e.g., where the components have suitable shape interfaces that make it easier for them to bond under mechanical force, pressure, and temperature, may be employed. Also of interest is laser welding, sonic welding, etc. The components can be immobilized relative to a surface of the solid support by mechanically holding the components on to the solid support, e.g., via deposition of a conductive overlay, as reviewed above, by way of a glue, such as a thermoplastic glue that physically holds items in place or thermosetting glue that is cross linked. Lasers may be employed with mixtures of some metals or conductive elements and locally sintered to make an electrical contact at the sintered point (e.g., where the laser removes or densifies an organic material in a binder, leaving a more thermally stable conductive material behind).

In addition to the above components, the ingestible circuitry of the invention also includes one or more electronic components. Electrical components of interest include, but are not limited to: logic and/or memory elements, e.g., in the form of an integrated circuit; a power device, e.g., battery, fuel cell or capacitor; an effector, e.g., sensor, stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc.

The various components may be produced on a surface of a solid support using a variety of different protocols. For example, where the components are electrode elements that make up a battery which is activated upon contact with stomach fluid, e.g., as described below, the battery components can be deposited directly onto the solid support. For example, a magnesium layer can be evaporated onto a surface of the solid support, where the solid support is fabricated from a material(s) that withstands the temperature and pressure that occurs during that deposition process. The different components of the electrodes can be deposited onto a conductor layer that is then attached to the solid support. For example, one can have a thin sheet of gold, and a layer of CuCl can be deposited onto the gold, with the resultant product being attached to the solid support. The different layers can also be deposited via an ink or a paste. For example, a structure of CuCl deposited on gold can be broken up into small particles, and an ink material can be fabricated from the particles. The resultant ink material can be used to either print or silk screen the desired electrode pattern onto the solid support. Also of interest are protocols that employ screen printing or ink jet printing techniques. In yet other embodiments, an unpatterned slurry is deposited. In yet other embodiments, “roll-to-roll” or “continuous web” protocols are employed.

In certain embodiments, the ingestible circuitry includes a coating layer. The purpose of this coating layer can vary, e.g., to protect the circuitry, the chip and/or the battery, or any components during processing, during storage, or even during ingestion. For example, one may not desire the circuitry to be exposed to the body fluids after it is ingested. In such instances, it may be desirable to only have the battery and transmit antennas be exposed to body fluids, with the rest of the circuitry being protected. In such instances, a coating on top of the circuitry that is ingestible but does not dissolve until the device is finished doing its transmission may be provided. Also of interest are coatings that are designed to protect the ingestible circuitry during storage, but dissolve immediately during use. For example, coatings that dissolve upon contact with an aqueous fluid, e.g., stomach fluid. Also of interest are protective processing coatings that are employed to allow the use of processing steps that would otherwise damage certain components of the device. For example, in embodiments where a chip with battery material deposited on the top and bottom is produced, the product needs to be diced. However, the dicing process can scratch off the battery material, and also there might be liquid involved which would cause the battery materials to discharge or dissolve. In such instances, a protective coating on the battery that prevents mechanical or liquid contact with the battery component during processing can be employed. Another purpose of the edible coatings would be to control the activation of the device. For example, an edible coating that sits on the battery electrodes and takes a certain period of time, e.g., five minutes, to dissolve upon contact with stomach fluid may be employed. The coating can also be an environmentally sensitive coating, e.g., a temperature or pH sensitive coating, or other chemically sensitive coating that provides for dissolution in a controlled fashion and allows one to activate the device when desired. Coatings that survive the stomach but dissolve in the intestine are also of interest, e.g., where one desires to delay activation until the device leaves the stomach. An example of such a coating is a polymer that is insoluble at low pH, but becomes soluble at a higher pH. Also of interest are pharmaceutical formulation protective coatings, e.g., a gel cap liquid protective coating that prevents the circuit from being activated by liquid of the gel cap.

Another component present in certain embodiments of the ingestible circuit is an activation mechanism, e.g., where the activation mechanism is distinct from the power source (e.g., battery). An example of such an alternative activation element is a patch of circuit that closes upon contact with fluid and activates the device. Another example is the reactive removal of a patch of the circuit that, before it is removed, keeps the circuit from operating.

As indicated above, ingestible circuitry devices in accordance with the invention may be fabricated in a variety of different ways. Any of a variety of different protocols may be employed in manufacturing the circuitry structures and components thereof. For example, molding, deposition and material removal, e.g., planar processing techniques, such as Micro-Electro-Mechanical Systems (MEMS) fabrication techniques, including surface micromachining and bulk micromachining techniques, may be employed. Deposition techniques that may be employed in certain embodiments of fabricating the structures include, but are not limited to: electroplating, cathodic arc deposition, plasma spray, screen or ink jet printing, sputtering, e-beam evaporation, physical vapor deposition, chemical vapor deposition, plasma enhanced chemical vapor deposition, etc. Material removal techniques included, but are not limited to: reactive ion etching, anisotropic chemical etching, isotropic chemical etching, sacrificial lift-off etching, planarization, e.g., via chemical mechanical polishing, laser ablation, electronic discharge machining (EDM), etc. Also of interest are lithographic protocols. Of interest in certain embodiments is the use of planar processing protocols, in which structures are built up and/or removed from a surface or surfaces of an initially planar substrate using a variety of different material removal and deposition protocols applied to the substrate in a sequential manner. Illustrative fabrication methods of interest are described in greater detail in PCT application serial nos. PCT/US2006/016370; PCT/US2007/022257; PCT/US2007/082563; PCT/US2008/052845; PCT/US2008/053999; and PCT/US2008/077753; the disclosures of which are herein incorporated by reference.

In certain embodiments, of interest is a bifurcated laminate process for preparing a device made up of ingestible circuitry. In this bifurcated laminate process, a laminate component is made separate from a circuitry component, allowing greater freedom in terms of processing protocols than may be employed to fabricate the disparate components together, since protocols may be employed to fabricate a first component that cannot be used to fabricate the other, and vice versa. In such bifurcated laminate protocols, the circuitry and laminate components are combined into a single device following separate fabrication of the two components. To combine the two components, any convenient protocol may be employed. In certain embodiments, the circuitry component is fixed into receiving feature of the laminate component, and fixed in place with a suitable adhesive, such as a conductive adhesive. An example of the use of this protocol for the fabrication of an ingestible event marker according to an embodiment of the invention is provided below in connection with a description of FIGS. 7A to 7B.

In FIG. 7A, an initial laminate sheet which includes battery elements and a virtual dipole element (e.g., skirt) of an ingestible event marker is shown being prepared using a “continuous web” or “roll-to-roll process”. The initial laminate sheet is characterized by having exposed battery layers, e.g., upper and lower exposed battery layers, and includes a first battery layer 708, e.g., CuCl layer (e.g., produced by evaporation, electrodeposition, slurry deposition, silkscreen, or inkjet, etc.), a second virtual dipole layer 710 positioned on top of the battery layer (i.e., skirt), a third current collector layer 712, e.g., Au, Cu, or graphite, etc., which may be a sheet or printed on the skirt, on top of the virtual dipole layer, and a fourth battery layer 714, e.g., Mg foil. Where desired, one or more of the layers can be made separately before lamination, so each process need not be compatible with all the layers e.g., current collector can be graphite-based, made with a high temperature process, which may be incompatible with processes and/or materials used to fabricate the other layers. Layers may be glued together with edible, cellulose adhesive or other safe pressure sensitive adhesives (including but not limited to, silicon materials, etc.).

Fabricated separate from the laminate component is the circuitry component. The circuitry component may be fabricated using any convenient protocol, e.g., as summarized above.

Next, a hole or passage 720 configured to receive the circuitry component (e.g., integrated circuit (IC)) is punched in the resultant laminate component 722 to receive the circuitry component 724, as shown in FIG. 7B. The circuitry component is then positioned in the passageway and fixed in place with a conductive adhesive 726, e.g., as shown in FIG. 7B. A variety of conductive adhesives may be employed, e.g., a polymer filled with conductive particles or a reactive (2-part) glue. The conductivity of the adhesive may be moderate. Where desired, the adhesive can be covered with a final layer of insulating adhesive.

In a variation of the above protocol, a pre-punched lower laminate is employed. In this embodiment, the IC is placed onto a pre-punch hole, where prior to placement, the sheet may be covered with a pressure sensitive adhesive material that is removed prior to chip placement during punching but is removed prior to chip placement. A second laminate is applied over the top of the chips and then opened, e.g., with a laser, over the chips and the top conductor (e.g., battery material) is additively applied, e.g., by screen printing. A final non-conductive layer, such as treated paper or plastic, is used in a roll-to-roll process after this step to isolate the two sides of the battery before the IEMs are finally punched out of the roll for assembly into tablets or capsules.

Finally, a disc shaped device 740, e.g., shown by dashed lines in FIG. 7B, is punched out to produce the desired IEM.

The above bifurcated laminate protocol finds use in, among other applications, fabricating IEMs that have a virtual dipole, e.g., as described in greater detail in pending U.S. Provisional Application Ser. No. 60/975,108 titled “Virtual Dipole Signal Amplification For Pharma-Informatics System” and filed on Sep. 25, 2007, the disclosure of which is herein incorporated by reference.

Devices Comprising Ingestible Circuitry

Ingestible circuitry of the invention finds use in a variety of different types of devices. One example of a device that can include ingestible circuitry of the invention is an ingestible identifier. Ingestible identifiers are described in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; PCT application serial no. PCT/US2008/077753 published as WO2009/042812; PCT application serial no. PCT/US2008/085048 published as WO 2009/070773; and PCT application serial no. PCT/US2009/36231; as well as pending U.S. application Ser. Nos. 12/126,792 and 12/126,798; the disclosures of which are incorporated herein by reference.

An example of such an ingestible identifier is an identifier that includes battery. The battery includes, when completed, a cathode, an anode, and an electrolyte, where the electrolyte component is provided by a physiological fluid, e.g., stomach acid. When the identifier is ingested and reaches the stomach, the cathode and anode are exposed to stomach fluid. The stomach fluid (either by itself or when combined with a dried conductive precursor medium component of the identifier, e.g., as described in pending PCT application serial no: PCT/US2007/082563 the disclosure of which is herein incorporated by reference) acts as the electrolyte component of the battery. Completion of the battery powers the circuitry of the identifier which, in turn broadcasts a detectable signal.

Identifiers of interest include two dissimilar electrochemical materials which constitute the two electrodes (e.g., anode and cathode) of the battery. When the electrode materials are exposed and come into contact with the body fluid, such as stomach acid or other types of fluid (either alone or in combination with a dried conductive medium precursor), a potential difference, that is, a voltage, is generated between the electrodes as a result of the respective oxidation and reduction reactions incurred to the two electrode materials. A voltaic cell, or battery, can thereby be produced. Accordingly, in embodiments of the invention, such batteries are configured such that when the two dissimilar materials are exposed to the target site, e.g., the stomach, the digestive tract, etc., during the physical and chemical erosion of the composition in which the signal generation element is present, a voltage is generated. The two dissimilar materials in an electrolyte are at different potentials. As an example, copper and zinc when put into a cell have different potentials. Similarly, gold and magnesium have different potentials. As a result, a potential difference between the two dissimilar materials is generated.

In certain of these embodiments, the battery power source may be viewed as a power source that exploits electrochemical reaction in an ionic solution such as gastric fluid, blood, or other bodily fluids and some tissues. FIG. 1 provides a diagrammatic representation of an ingestible identifier 10 having a battery that is completed by stomach fluid. First and second electrode materials (12 and 13) are present in an ionic solution 16 (which may be made up of target site fluid alone or target site fluid combined with a dried conductive medium precursor). This configuration creates a low voltage (V−) and a high voltage (V+) as applied to corresponding inputs of an electronic circuit 14. The polarity of the electrodes is determined by the connection needs of the electronic circuit 14 and the design as illustrated is just one embodiment. Thus, it will be apparent to one skilled in the art that the scope of the present invention includes reversal of the polarity of the electrodes, such that electrode 13 represents the low voltage and electrode 12 represents high voltage. The two outputs of that electronic circuit 14 are E0 11 and E1 15, which are the signal-transmission electrodes on the top surface.

Electrodes 12 and 13 can be made of any two materials appropriate to the environment in which the identifier 10 will be operating. The active materials are any pair of materials with different electrochemical potentials, as long as they are ingestible, e.g., as described above. For instance, in some embodiments where ionic solution 16 comprises stomach acids, electrodes 12 and 13 may be made of a noble metal (e.g., gold, silver, platinum, palladium or the like) so that they do not corrode prematurely. Suitable materials are not restricted to metals, and in certain embodiments the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.

Materials and pairings of interest include, but are not limited to those reported in Table 2 below.

TABLE 2 Anode Cathode Metals Magnesium, Zinc Sodium (†), Lithium (†) Iron and alloys thereof Salts Copper salts: iodide, chloride, bromide, sulfate, formate, (other anions possible) Fe3+ salts: e.g. orthophosphate, pyrophosphate, (other anions possible) Oxygen or hydrogen (††) on platinum, gold or other catalytic surfaces Intercalation Graphite with Vanadium oxide compounds Li, K, Ca, Manganese oxide Na, Mg (†) Protected anodes: certain high energy anode material such as Li, Na, and other alkali metals are unstable in their pure form in the presence of water or oxygen. These may however be used in an aqueous environment if stabilized. One example of this stabilization is the so-called “protected lithium anode” developed by Polyplus Corporation (Berkeley, CA), where a polymer film is deposited on the surface of lithium metal to protect it from rapid oxidation and allow its use in aqueous environment or air ambient. (Polyplus has IP pending on this). (††) Dissolved oxygen can also serve as a cathode. In this case, the dissolved oxygen in the bodily fluids would be reduced to OH— at a suitable catalytic surface such at Pt or gold. Also of interest dissolved hydrogen in a hydrogen reduction reaction.

In certain embodiments, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage output of the battery. Non-metals that may be used as doping agents in certain embodiments include, but are not limited to: sulfur, iodine and the like.

In certain embodiments, the electrode materials are cuprous iodine (CuI) or cuprous chloride as the cathode and magnesium (Mg) metal or magnesium alloy as the anode. Embodiments of the present invention use electrode materials that are not harmful to the human body.

In certain embodiments, the batteries have a small form factor. Batteries may be about 20 mm3 or smaller, e.g., about 10 mm3 or smaller, such as 1.0 mm3 or smaller, including 0.1 mm3 or smaller, including 0.02 mm3 or smaller. In certain embodiments, the battery element is dimensioned to have a width ranging from about 0.01 mm to about 100 mm, e.g., from about 0.1 mm to about 20 mm, including from about 0.5 mm to about 2 mm; a length ranging from about 0.01 mm to about 100 mm, e.g., from about 0.1 mm to about 20 mm, including from about 0.5 mm to about 2 mm, and a height ranging from about 0.01 mm to about 10 mm, e.g., from about 0.05 mm to about 2 mm, including from about 0.1 mm to about 0.5 mm.

The ingestible identifier 10 uses the voltage potential difference to power up electronic circuit 14. In one embodiment, the electronic circuit 14 modulates conductance to create a unique and identifiable current signature.

In certain embodiments, the battery has a laminate structure. As indicated above, a laminate process may be employed to fabricate ingestible circuitry in accordance with the invention. An example of such a laminate process is illustrated in FIGS. 2A to 2D. In FIG. 2A, structure 21 is made up of circular metallic foil 22, e.g., gold, and has patterned areas of an electrode material, such as CuCl, patterned on its surface in the form of four distinct quadrants 24. The CuCl regions 24 may be produced on the surface of the foil via any convenient protocol, such as evaporation. Also shown is area 26 which lacks electrode material and is configured to receive an integrated circuit. In FIG. 2B, structure 21 placed onto solid support 23, which support is made of an ingestible material, e.g., as described above. Structure 21 may be placed onto support 23 in a manner such that the two components are stably associated with each other, e.g., by press-fitting the structure 21 onto support 23 or gluing structure 21 onto support 23, among other ways to immobilize structure 21 onto support 23. While the sequence shown in FIGS. 2A and 2B illustrate a protocol in which structure 21 is produced before placement on support 23, in another embodiment the metallic foil 22 is first placed on support 23. Following placement of metallic foil 22 on support 23, the patterned areas of electrode material 24 are produced on the surface of metallic foil 22. In FIG. 2C, integrated circuit 25 is positioned in area 26 and connected to metallic foil 22. Finally, in FIG. 2D, a cover layer 27 (e.g., fabricated from the same material as the support) having electrode cutout areas 28 is stably positioned (e.g., with an ingestible adhesive) over structure 21 to produce a final ingestible circuit device that includes a solid support, an integrated circuit and four distinct surface electrodes. In this structure, the metallic foil layer 22 serves as the conductive interconnect between the different electronic components, i.e., the integrated circuit and electrodes, that are positioned on the surface of the support.

FIG. 3A illustrates another embodiment of a laminate process that may be employed to construct an ingestible circuit device of the invention. In FIG. 3A, structure 30 has been produced by first providing a release layer 31 on a backing layer 32. Metallic layer (e.g., gold) 33 has been deposited on the surface of release layer 31. Next, electrode material 34, e.g., CuCl, is deposited on surface of metallic layer 33. Finally, insulating layer 35 is positioned over electrode layer 34, which insulating layer may have cutout regions (not shown), e.g., as described in connection with the description of FIGS. 2A to 2D.

In FIG. 3B, an integrated circuit 36 having a layer of a second electrode material 37, e.g., Mg, on a surface thereof, is positioned in ingestible support 38. To assemble the final device, the release layer 31 and backing layer 32 are removed from structure 30, providing exposed metallic layer 33. This exposed metallic layer 33 is then positioned over circuit 36 and support 38 to yield the final desired device.

FIG. 4 illustrates a transfer protocol that may be employed to fabricate ingestible circuits in accordance with the invention. In FIG. 4, a circuit structure 40 that includes integrated circuit 41 connected to five different electrodes 42 via interconnecting conductive lines 43 is first produced on a removable backing 44. After production of circuit structure 40, backing 44 is removed and the circuit structure 44 is positioned on the surface of ingestible support 45. The protocol illustrated in FIG. 4 may be employed in processes where parameters of circuit structure production (e.g., chemicals, temperatures, pressures) are incompatible with the solid support material.

FIG. 5 illustrates a variation in which a conductive ink is employed to provide conductive interconnects between different components of an ingestible circuit device. In the device shown in FIG. 5, ingestible support 51 has displayed on its surface four different electrodes (made up of electrode material) 52. Positioned at a center region of support 51 are four contact pads 53. Interconnecting each electrode to a contact pad is a line of conductive ink material 54. To complete the structure, an integrated circuit is bonded to pads 53 and then a layer of protection material is positioned over the surface leaving exposed electrode elements, analogous to that shown in FIG. 2D.

In certain instances, laser patterning may be employed during fabrication of ingestible circuits of the invention, e.g., as illustrated in FIGS. 6A and 6B. In FIG. 6A, a blanket (i.e., non-patterned) layer of metal 61 is deposited on a surface of an ingestible support 62. Positioned on a portion of metal layer 61 is integrated circuit 63. Next, laser patterning is employed to remove portions of metal layer 61 to produce antenna structure 64 and 65 on surface of support 62.

Ingestible identifiers that include ingestible circuitry of the invention find use in a variety of different applications. One application of interest is the use of the ingestible identifiers as ingestible event markers (IEMs). Ingestible event markers can be used in both therapeutic and non-therapeutic applications, and are described in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; PCT application serial no. PCT/US2008/077753 published as WO 2009/042812; PCT application serial no. PCT/US2008/085048 published as WO 2009/070773; and PCT application serial no. PCT/US2009/36231; as well as pending U.S. application Ser. Nos. 12/126,792 and 12/126,798; the disclosures of which are incorporated herein by reference.

The disclosure of these ingestible event markers and applications for the same therein is specifically incorporated herein by reference. Therapeutic applications of ingestible identifiers are embodiments where, at least in some instances, the identifier is associated with a pharmaceutical composition. Medical embodiments of the present invention provide the clinician an important new tool in their therapeutic armamentarium: automatic detection and identification of pharmaceutical agents actually delivered into the body. The applications of this new information device and system are multi-fold. Applications include, but are not limited to: (1) monitoring patient compliance with prescribed therapeutic regimens; (2) tailoring therapeutic regimens based on patient compliance; (3) monitoring patient compliance in clinical trials; (4) monitoring usage of controlled substances; and the like. Each of these different illustrative applications is reviewed in greater detail in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; PCT application serial no. PCT/US2008/077753 published as WO2009/042812; PCT application serial no. PCT/US2008/085048 published as WO 2009/070773; and PCT application serial no. PCT/US2009/36231; as well as pending U.S. application Ser. Nos. 12/126,792 and 12/126,798; the disclosures of which are incorporated herein by reference.

It is to be understood that this invention is not limited to particular embodiments described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.

All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.

As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims

1. A method of producing an identifier, the method comprising:

laminating a non-conducting element between first and second dissimilar materials to create a laminate component, wherein the first and second dissimilar materials generate a voltage potential when in contact with a conducting fluid;
removing a portion of the first and second dissimilar materials from the perimeter of the laminate component to expose the non-conducting element and to create a skirt; and
securing a circuit within an aperture formed in the laminate component, wherein the circuit is electrically coupled to each of the first and second dissimilar materials, and wherein the circuit is operable by the voltage potential generated by the first and second dissimilar materials.

2. The method of claim 1, further comprising selecting the first and second dissimilar materials to create a voltaic cell through oxidation and reduction reactions when the first and second dissimilar materials are in contact with the conducting fluid.

3. The method of claim 2, further comprising configuring the circuit to generate a detectable signal that identifies unique information associated with the identifier.

4. The method of claim 2, wherein the conducting fluid is a physiological fluid.

5. The method of claim 1, further comprising securing the identifier to a pharmaceutical product to produce a tagged product such that activation of the circuit is an indication that the pharmaceutical product of the tagged product is in contact with physiological fluid.

6. The method of claim 5, further comprising sealing the tagged product with a coating to isolate the tagged product from the physiological fluid for a predefined period of time until the coating is dissolved by the physiological fluid to allow the tagged product to reach a target site at which time the tagged product is exposed to the physiological fluid.

7. The method of claim 1, further comprising laminating a current collector element between the non-conducting element and at least one of the first and second dissimilar materials.

8. The method of claim 1, further comprising forming the aperture through the laminate component to receive the circuit within the aperture.

9. The method of claim 1, further comprising fixing the circuit within the aperture with a conductive adhesive.

10. The method of claim 1, further comprising removing a portion of the laminate component encompassing the circuit to produce the identifier.

Referenced Cited
U.S. Patent Documents
3607788 September 1971 Adolph
3642008 February 1972 Bolduc
3679480 July 1972 Brown et al.
3682160 August 1972 Murata
3719183 March 1973 Schwartz
3799802 March 1974 Mc Cormack et al.
3828766 August 1974 Krasnow
3837339 September 1974 Aisenberg et al.
3893111 July 1975 Cotter
3967202 June 29, 1976 Batz
3989050 November 2, 1976 Buchalter
4017856 April 12, 1977 Wiegand
4077397 March 7, 1978 Ellis
4077398 March 7, 1978 Ellis
4082087 April 4, 1978 Howson
4090752 May 23, 1978 Long
4106348 August 15, 1978 Auphan
4129125 December 12, 1978 Lester
4166453 September 4, 1979 McClelland
4239046 December 16, 1980 Ong
4251795 February 17, 1981 Shibasaki et al.
4269189 May 26, 1981 Abraham
4331654 May 25, 1982 Morris
4345588 August 24, 1982 Widder et al.
4418697 December 6, 1983 Tama
4425117 January 10, 1984 Hugemann et al.
4494950 January 22, 1985 Fischell
4559950 December 24, 1985 Vaughan
4635641 January 13, 1987 Hoffman
4654165 March 31, 1987 Eisenberg
4663250 May 5, 1987 Ong et al.
4669479 June 2, 1987 Dunseath
4725997 February 16, 1988 Urquhart et al.
4763659 August 16, 1988 Dunseath
4784162 November 15, 1988 Ricks
4793825 December 27, 1988 Benjamin et al.
4844076 July 4, 1989 Lesho
4896261 January 23, 1990 Nolan
4975230 December 4, 1990 Pinkhasov
4987897 January 29, 1991 Funke
5016634 May 21, 1991 Vock et al.
5079006 January 7, 1992 Urquhart
5167626 December 1, 1992 Casper
5176626 January 5, 1993 Soehendra
5261402 November 16, 1993 DiSabito
5263481 November 23, 1993 Axelgaard et al.
5279607 January 18, 1994 Schentag et al.
5281287 January 25, 1994 Lloyd
5283136 February 1, 1994 Peled et al.
5305745 April 26, 1994 Zacouto
5318557 June 7, 1994 Gross
5394882 March 7, 1995 Mawhinney
5395366 March 7, 1995 D'Andrea et al.
5436091 July 25, 1995 Shackle et al.
5458141 October 17, 1995 Neil et al.
5485841 January 23, 1996 Watkin et al.
5596302 January 21, 1997 Mastrocola et al.
5600548 February 4, 1997 Nguyen et al.
5634468 June 3, 1997 Platt
5645063 July 8, 1997 Straka et al.
5738708 April 14, 1998 Peachey et al.
5740811 April 21, 1998 Hedberg
5757326 May 26, 1998 Koyama et al.
5792048 August 11, 1998 Schaefer
5796038 August 18, 1998 Manteghi
5802467 September 1, 1998 Salazar
5833716 November 10, 1998 Bar-Or
5845265 December 1, 1998 Woolston
5862803 January 26, 1999 Besson
5868136 February 9, 1999 Fox
5925030 July 20, 1999 Gross et al.
5957854 September 28, 1999 Besson
5974124 October 26, 1999 Schlueter, Jr. et al.
5999846 December 7, 1999 Pardey et al.
6038464 March 14, 2000 Axelgaard et al.
6042710 March 28, 2000 Dubrow
6047203 April 4, 2000 Sackner
6076016 June 13, 2000 Feierbach et al.
6081734 June 27, 2000 Batz
6095985 August 1, 2000 Raymond et al.
6122351 September 19, 2000 Schlueter, Jr. et al.
6141592 October 31, 2000 Pauly
6156343 December 5, 2000 Morita et al.
6200265 March 13, 2001 Walsh et al.
6206702 March 27, 2001 Hayden et al.
6217744 April 17, 2001 Crosby
6231593 May 15, 2001 Meserol
6245057 June 12, 2001 Sieben et al.
6269058 July 31, 2001 Yamanoi et al.
6285897 September 4, 2001 Kilcoyne et al.
6287252 September 11, 2001 Lugo
6288629 September 11, 2001 Cofino et al.
6289238 September 11, 2001 Besson
6315719 November 13, 2001 Rode et al.
6358202 March 19, 2002 Arent
6364834 April 2, 2002 Reuss
6366206 April 2, 2002 Ishikawa et al.
6371927 April 16, 2002 Brune
6374670 April 23, 2002 Spelman
6380858 April 30, 2002 Yarin et al.
6394997 May 28, 2002 Lemelson
6426863 July 30, 2002 Munshi
6432292 August 13, 2002 Pinto et al.
6440069 August 27, 2002 Raymond et al.
6441747 August 27, 2002 Khair
6453199 September 17, 2002 Kobozev
6477424 November 5, 2002 Thompson et al.
6496705 December 17, 2002 Ng et al.
6526315 February 25, 2003 Inagawa
6531026 March 11, 2003 Takeichi et al.
6544174 April 8, 2003 West
6564079 May 13, 2003 Cory
6577893 June 10, 2003 Besson
6579231 June 17, 2003 Phipps
6609018 August 19, 2003 Cory
6612984 September 2, 2003 Kerr
6632175 October 14, 2003 Marshall
6632216 October 14, 2003 Houzego et al.
6643541 November 4, 2003 Mok et al.
6654638 November 25, 2003 Sweeney
6663846 December 16, 2003 McCombs
6673474 January 6, 2004 Yamamoto
6680923 January 20, 2004 Leon
6689117 February 10, 2004 Sweeney et al.
6694161 February 17, 2004 Mehrotra
6704602 March 9, 2004 Berg et al.
6720923 April 13, 2004 Hayward et al.
6738671 May 18, 2004 Christophersom et al.
6740033 May 25, 2004 Olejniczak et al.
6745082 June 1, 2004 Axelgaard et al.
6755783 June 29, 2004 Cosentino
6757523 June 29, 2004 Fry
6800060 October 5, 2004 Marshall
6801137 October 5, 2004 Eggers et al.
6822554 November 23, 2004 Vrijens et al.
6836862 December 28, 2004 Erekson et al.
6839659 January 4, 2005 Tarassenko et al.
6840904 January 11, 2005 Goldberg
6842636 January 11, 2005 Perrault
6845272 January 18, 2005 Thomsen
6864780 March 8, 2005 Doi
6879810 April 12, 2005 Bouet
6909878 June 21, 2005 Haller
6922592 July 26, 2005 Thompson et al.
6928370 August 9, 2005 Anuzis et al.
6929636 August 16, 2005 von Alten
6937150 August 30, 2005 Medema
6942616 September 13, 2005 Kerr
6951536 October 4, 2005 Yokoi
6957107 October 18, 2005 Rogers et al.
6968153 November 22, 2005 Heinonen
6977511 December 20, 2005 Patel et al.
6987965 January 17, 2006 Ng et al.
6990082 January 24, 2006 Zehavi et al.
7002476 February 21, 2006 Rapchak
7004395 February 28, 2006 Koenck
7009634 March 7, 2006 Iddan et al.
7009946 March 7, 2006 Kardach
7013162 March 14, 2006 Gorsuch
7016648 March 21, 2006 Haller
7020508 March 28, 2006 Stivoric
7024248 April 4, 2006 Penner et al.
7031745 April 18, 2006 Shen
7031857 April 18, 2006 Tarassenko et al.
7039453 May 2, 2006 Mullick
7046649 May 16, 2006 Awater et al.
7118531 October 10, 2006 Krill
7127300 October 24, 2006 Mazar et al.
7146228 December 5, 2006 Nielsen
7146449 December 5, 2006 Do et al.
7149581 December 12, 2006 Goedeke et al.
7154071 December 26, 2006 Sattler et al.
7155232 December 26, 2006 Godfrey et al.
7160258 January 9, 2007 Imran
7164942 January 16, 2007 Avrahami
7171166 January 30, 2007 Ng et al.
7171177 January 30, 2007 Park et al.
7171259 January 30, 2007 Rytky
7176784 February 13, 2007 Gilbert et al.
7187960 March 6, 2007 Abreu
7188767 March 13, 2007 Penuela
7194038 March 20, 2007 Inkinen
7206630 April 17, 2007 Tarler
7209790 April 24, 2007 Thompson et al.
7215660 May 8, 2007 Perlman
7215991 May 8, 2007 Besson
7218967 May 15, 2007 Bergelson
7231451 June 12, 2007 Law
7243118 July 10, 2007 Lou
7246521 July 24, 2007 Kim
7249212 July 24, 2007 Do
7252792 August 7, 2007 Perrault
7253716 August 7, 2007 Lovoi et al.
7261690 August 28, 2007 Teller
7270633 September 18, 2007 Goscha
7273454 September 25, 2007 Raymond et al.
7289855 October 30, 2007 Nghiem
7291497 November 6, 2007 Holmes
7292139 November 6, 2007 Mazar et al.
7294105 November 13, 2007 Islam
7313163 December 25, 2007 Liu
7317378 January 8, 2008 Jarvis et al.
7318808 January 15, 2008 Tarassenko et al.
7336929 February 26, 2008 Yasuda
7342895 March 11, 2008 Serpa
7346380 March 18, 2008 Axelgaard et al.
7349722 March 25, 2008 Witkowski et al.
7352998 April 1, 2008 Palin
7353258 April 1, 2008 Washburn
7357891 April 15, 2008 Yang et al.
7359674 April 15, 2008 Markki
7366558 April 29, 2008 Virtanen et al.
7368191 May 6, 2008 Andelman et al.
7373196 May 13, 2008 Ryu et al.
7375739 May 20, 2008 Robbins
7376435 May 20, 2008 McGowan
7382263 June 3, 2008 Danowski et al.
7387607 June 17, 2008 Holt
7388903 June 17, 2008 Godfrey et al.
7389088 June 17, 2008 Kim
7392015 June 24, 2008 Farlow
7395106 July 1, 2008 Ryu et al.
7396330 July 8, 2008 Banet
7404968 July 29, 2008 Abrams et al.
7413544 August 19, 2008 Kerr
7414534 August 19, 2008 Kroll et al.
7415242 August 19, 2008 Ngan
7424268 September 9, 2008 Diener
7424319 September 9, 2008 Muehlsteff
7427266 September 23, 2008 Ayer et al.
7471665 December 30, 2008 Perlman
7499674 March 3, 2009 Salokannel
7510121 March 31, 2009 Koenck
7512448 March 31, 2009 Malick
7515043 April 7, 2009 Welch
7519416 April 14, 2009 Sula et al.
7523756 April 28, 2009 Minai
7525426 April 28, 2009 Edelstein
7539533 May 26, 2009 Tran
7542878 June 2, 2009 Nanikashvili
7551590 June 23, 2009 Haller
7554452 June 30, 2009 Cole
7575005 August 18, 2009 Mumford
7616111 November 10, 2009 Covannon
7617001 November 10, 2009 Penner et al.
7639473 December 29, 2009 Hsu et al.
7640802 January 5, 2010 King et al.
7647112 January 12, 2010 Tracey
7647185 January 12, 2010 Tarassenko et al.
7653031 January 26, 2010 Godfrey et al.
7672714 March 2, 2010 Kuo
7673679 March 9, 2010 Harrison et al.
7678043 March 16, 2010 Gilad
7697994 April 13, 2010 VanDanacker et al.
7720036 May 18, 2010 Sadri
7729776 June 1, 2010 Von Arx et al.
7733224 June 8, 2010 Tran
7736318 June 15, 2010 Costentino
7756587 July 13, 2010 Penner et al.
7809399 October 5, 2010 Lu
7844341 November 30, 2010 Von Arx et al.
20010027331 October 4, 2001 Thompson
20010044588 November 22, 2001 Mault
20010051766 December 13, 2001 Gazdzinski et al.
20020002326 January 3, 2002 Causey, III
20020026111 February 28, 2002 Ackerman
20020032385 March 14, 2002 Raymond et al.
20020040278 April 4, 2002 Anuzis et al.
20020077620 June 20, 2002 Sweeney et al.
20020132226 September 19, 2002 Nair
20030017826 January 23, 2003 Fishman
20030023150 January 30, 2003 Yokoi et al.
20030028226 February 6, 2003 Thompson
20030062551 April 3, 2003 Chen
20030065536 April 3, 2003 Hansen
20030076179 April 24, 2003 Branch et al.
20030083559 May 1, 2003 Thompson
20030126593 July 3, 2003 Mault
20030130714 July 10, 2003 Nielsen et al.
20030135128 July 17, 2003 Suffin et al.
20030135392 July 17, 2003 Vrijens et al.
20030152622 August 14, 2003 Louie-Helm et al.
20030158466 August 21, 2003 Lynn et al.
20030158756 August 21, 2003 Abramson
20030162556 August 28, 2003 Libes
20030167000 September 4, 2003 Mullick et al.
20030171791 September 11, 2003 KenKnight
20030171898 September 11, 2003 Tarassenko et al.
20030181788 September 25, 2003 Yokoi et al.
20030185286 October 2, 2003 Yuen
20030187337 October 2, 2003 Tarassenko et al.
20030187338 October 2, 2003 Say et al.
20030195403 October 16, 2003 Berner et al.
20030213495 November 20, 2003 Fujita et al.
20030214579 November 20, 2003 Iddan
20030216622 November 20, 2003 Meron et al.
20030216625 November 20, 2003 Phipps
20030216666 November 20, 2003 Ericson et al.
20030216729 November 20, 2003 Marchitto
20040008123 January 15, 2004 Carrender et al.
20040018476 January 29, 2004 LaDue
20040034295 February 19, 2004 Salganicoff
20040049245 March 11, 2004 Gass
20040073095 April 15, 2004 Causey et al.
20040073454 April 15, 2004 Urquhart et al.
20040077995 April 22, 2004 Ferek-Petric
20040082982 April 29, 2004 Gord et al.
20040087839 May 6, 2004 Raymond et al.
20040092801 May 13, 2004 Drakulic
20040106859 June 3, 2004 Say et al.
20040115517 June 17, 2004 Fukuda et al.
20040121015 June 24, 2004 Chidlaw et al.
20040148140 July 29, 2004 Tarassenko et al.
20040153007 August 5, 2004 Harris
20040167226 August 26, 2004 Serafini
20040167801 August 26, 2004 Say et al.
20040193020 September 30, 2004 Chiba
20040193446 September 30, 2004 Mayer et al.
20040199222 October 7, 2004 Sun et al.
20040215084 October 28, 2004 Shimizu et al.
20040218683 November 4, 2004 Batra
20040220643 November 4, 2004 Schmidt
20040224644 November 11, 2004 Wu
20040225199 November 11, 2004 Evanyk
20040253304 December 16, 2004 Gross et al.
20040260154 December 23, 2004 Sidelnik
20050017841 January 27, 2005 Doi
20050020887 January 27, 2005 Goldberg
20050021370 January 27, 2005 Riff
20050024198 February 3, 2005 Ward
20050027205 February 3, 2005 Tarassenko et al.
20050038321 February 17, 2005 Fujita et al.
20050043634 February 24, 2005 Yokoi et al.
20050062644 March 24, 2005 Leci
20050065407 March 24, 2005 Nakamura et al.
20050070778 March 31, 2005 Lackey
20050092108 May 5, 2005 Andermo
20050096514 May 5, 2005 Starkebaum
20050096562 May 5, 2005 Delalic et al.
20050101843 May 12, 2005 Quinn
20050101872 May 12, 2005 Sattler
20050115561 June 2, 2005 Stahmann et al.
20050116820 June 2, 2005 Goldreich
20050117389 June 2, 2005 Worledge
20050121322 June 9, 2005 Say et al.
20050131281 June 16, 2005 Ayer et al.
20050143623 June 30, 2005 Kojima
20050148883 July 7, 2005 Boesen
20050154428 July 14, 2005 Bruinsma
20050165323 July 28, 2005 Montgomery
20050177069 August 11, 2005 Takizawa
20050182389 August 18, 2005 LaPorte
20050187789 August 25, 2005 Hatlestad et al.
20050192489 September 1, 2005 Marshall
20050197680 September 8, 2005 DelMain et al.
20050208251 September 22, 2005 Aisenbrey
20050228268 October 13, 2005 Cole
20050234307 October 20, 2005 Heinonen
20050240305 October 27, 2005 Bogash et al.
20050245794 November 3, 2005 Dinsmoor
20050259768 November 24, 2005 Yang et al.
20050261559 November 24, 2005 Mumford
20050267556 December 1, 2005 Shuros et al.
20050277912 December 15, 2005 John
20050277999 December 15, 2005 Strother et al.
20050285746 December 29, 2005 Sengupta
20050288594 December 29, 2005 Lewkowicz et al.
20060001496 January 5, 2006 Abrosimov et al.
20060028727 February 9, 2006 Moon et al.
20060036134 February 16, 2006 Tarassenko et al.
20060061472 March 23, 2006 Lovoi et al.
20060065713 March 30, 2006 Kingery
20060068006 March 30, 2006 Begleiter
20060074283 April 6, 2006 Henderson
20060078765 April 13, 2006 Yang et al.
20060095091 May 4, 2006 Drew
20060095093 May 4, 2006 Bettesh et al.
20060100533 May 11, 2006 Han
20060109058 May 25, 2006 Keating
20060110962 May 25, 2006 Powell
20060122667 June 8, 2006 Chavan et al.
20060136266 June 22, 2006 Tarassenko et al.
20060142648 June 29, 2006 Banet
20060145876 July 6, 2006 Kimura
20060148254 July 6, 2006 McLean
20060149339 July 6, 2006 Burnes
20060155174 July 13, 2006 Glukhovsky et al.
20060155183 July 13, 2006 Kroecker
20060161225 July 20, 2006 Sormann et al.
20060179949 August 17, 2006 Kim
20060183993 August 17, 2006 Horn
20060184092 August 17, 2006 Atanasoska et al.
20060204738 September 14, 2006 Dubrow et al.
20060210626 September 21, 2006 Spaeder
20060216603 September 28, 2006 Choi
20060218011 September 28, 2006 Walker
20060235489 October 19, 2006 Drew
20060247505 November 2, 2006 Siddiqui
20060253005 November 9, 2006 Drinan
20060270346 November 30, 2006 Ibrahim
20060273882 December 7, 2006 Posamentier
20060280227 December 14, 2006 Pinkney
20060282001 December 14, 2006 Noel
20060289640 December 28, 2006 Mercure et al.
20060293607 December 28, 2006 Alt
20070002038 January 4, 2007 Suzuki
20070006636 January 11, 2007 King et al.
20070008113 January 11, 2007 Spoonhower et al.
20070016089 January 18, 2007 Fischell et al.
20070027386 February 1, 2007 Such
20070027388 February 1, 2007 Chou
20070038054 February 15, 2007 Zhou
20070049339 March 1, 2007 Barak et al.
20070055098 March 8, 2007 Shimizu et al.
20070060797 March 15, 2007 Ball
20070073353 March 29, 2007 Rooney et al.
20070096765 May 3, 2007 Kagan
20070106346 May 10, 2007 Bergelson
20070123772 May 31, 2007 Euliano
20070129622 June 7, 2007 Bourget
20070130287 June 7, 2007 Kumar
20070135803 June 14, 2007 Belson
20070142721 June 21, 2007 Berner et al.
20070156016 July 5, 2007 Betesh
20070162089 July 12, 2007 Mosesov
20070162090 July 12, 2007 Penner
20070167495 July 19, 2007 Brown et al.
20070167848 July 19, 2007 Kuo et al.
20070173701 July 26, 2007 Al-Ali
20070179347 August 2, 2007 Tarassenko et al.
20070185393 August 9, 2007 Zhou
20070191002 August 16, 2007 Ge
20070196456 August 23, 2007 Stevens
20070207793 September 6, 2007 Myer
20070208233 September 6, 2007 Kovacs
20070213659 September 13, 2007 Trovato et al.
20070237719 October 11, 2007 Jones
20070244370 October 18, 2007 Kuo et al.
20070255198 November 1, 2007 Leong et al.
20070255330 November 1, 2007 Lee
20070270672 November 22, 2007 Hayter
20070279217 December 6, 2007 Venkatraman
20070282174 December 6, 2007 Sabatino
20070282177 December 6, 2007 Pilz
20070299480 December 27, 2007 Hill
20080014866 January 17, 2008 Lipowski
20080020037 January 24, 2008 Robertson
20080021519 January 24, 2008 DeGeest
20080021521 January 24, 2008 Shah
20080027679 January 31, 2008 Shklarski
20080033273 February 7, 2008 Zhou
20080039700 February 14, 2008 Drinan et al.
20080046038 February 21, 2008 Hill
20080051667 February 28, 2008 Goldreich
20080058614 March 6, 2008 Banet
20080062856 March 13, 2008 Feher
20080065168 March 13, 2008 Bitton et al.
20080074307 March 27, 2008 Boric-Lubecke
20080077015 March 27, 2008 Boric-Lubecke
20080077028 March 27, 2008 Schaldach et al.
20080077188 March 27, 2008 Denker et al.
20080091089 April 17, 2008 Guillory et al.
20080091114 April 17, 2008 Min
20080097549 April 24, 2008 Colbaugh
20080097917 April 24, 2008 Dicks
20080103440 May 1, 2008 Ferren et al.
20080114224 May 15, 2008 Bandy et al.
20080119705 May 22, 2008 Patel
20080119716 May 22, 2008 Boric-Lubecke
20080121825 May 29, 2008 Trovato et al.
20080137566 June 12, 2008 Marholev
20080140403 June 12, 2008 Hughes et al.
20080146871 June 19, 2008 Arneson et al.
20080146889 June 19, 2008 Young
20080146892 June 19, 2008 LeBeouf
20080154104 June 26, 2008 Lamego
20080166992 July 10, 2008 Ricordi
20080175898 July 24, 2008 Jones et al.
20080183245 July 31, 2008 Van Oort
20080188837 August 7, 2008 Belsky et al.
20080194912 August 14, 2008 Trovato et al.
20080208009 August 28, 2008 Shklarski
20080214901 September 4, 2008 Gehman
20080214985 September 4, 2008 Yanaki
20080243020 October 2, 2008 Chou
20080249360 October 9, 2008 Li
20080262320 October 23, 2008 Schaefer et al.
20080262336 October 23, 2008 Ryu
20080269664 October 30, 2008 Trovato et al.
20080275312 November 6, 2008 Mosesov
20080284599 November 20, 2008 Zdeblick et al.
20080288027 November 20, 2008 Kroll
20080294020 November 27, 2008 Sapounas
20080300572 December 4, 2008 Rankers
20080303638 December 11, 2008 Nguyen
20080306357 December 11, 2008 Korman
20080306359 December 11, 2008 Zdeblick et al.
20080306360 December 11, 2008 Robertson
20080311852 December 18, 2008 Hansen
20080312522 December 18, 2008 Rowlandson
20080316020 December 25, 2008 Robertson
20090009330 January 8, 2009 Sakama et al.
20090009332 January 8, 2009 Nunez et al.
20090024045 January 22, 2009 Prakash
20090030297 January 29, 2009 Miller
20090034209 February 5, 2009 Joo
20090043171 February 12, 2009 Rule
20090048498 February 19, 2009 Riskey
20090062634 March 5, 2009 Say et al.
20090062670 March 5, 2009 Sterling
20090069642 March 12, 2009 Gao
20090069655 March 12, 2009 Say et al.
20090069656 March 12, 2009 Say et al.
20090069657 March 12, 2009 Say et al.
20090069658 March 12, 2009 Say et al.
20090076343 March 19, 2009 James
20090082645 March 26, 2009 Hafezi
20090087483 April 2, 2009 Sison
20090088618 April 2, 2009 Ameson
20090099435 April 16, 2009 Say et al.
20090110148 April 30, 2009 Zhang
20090112626 April 30, 2009 Talbot
20090124871 May 14, 2009 Arshak
20090131774 May 21, 2009 Sweitzer
20090135886 May 28, 2009 Robertson et al.
20090157113 June 18, 2009 Marcotte
20090157358 June 18, 2009 Kim
20090161602 June 25, 2009 Matsumoto
20090163789 June 25, 2009 Say et al.
20090171180 July 2, 2009 Pering
20090173628 July 9, 2009 Say et al.
20090177055 July 9, 2009 Say et al.
20090177056 July 9, 2009 Say et al.
20090177057 July 9, 2009 Say et al.
20090177058 July 9, 2009 Say et al.
20090177059 July 9, 2009 Say et al.
20090177060 July 9, 2009 Say et al.
20090177061 July 9, 2009 Say et al.
20090177062 July 9, 2009 Say et al.
20090177063 July 9, 2009 Say et al.
20090177064 July 9, 2009 Say et al.
20090177065 July 9, 2009 Say et al.
20090177066 July 9, 2009 Say et al.
20090182206 July 16, 2009 Najafi
20090182212 July 16, 2009 Say et al.
20090182213 July 16, 2009 Say et al.
20090182214 July 16, 2009 Say et al.
20090182215 July 16, 2009 Say et al.
20090182388 July 16, 2009 Von Arx
20090187088 July 23, 2009 Say et al.
20090187089 July 23, 2009 Say et al.
20090187090 July 23, 2009 Say et al.
20090187091 July 23, 2009 Say et al.
20090187092 July 23, 2009 Say et al.
20090187093 July 23, 2009 Say et al.
20090187094 July 23, 2009 Say et al.
20090187095 July 23, 2009 Say et al.
20090187381 July 23, 2009 King et al.
20090192351 July 30, 2009 Nishino
20090192368 July 30, 2009 Say et al.
20090192369 July 30, 2009 Say et al.
20090192370 July 30, 2009 Say et al.
20090192371 July 30, 2009 Say et al.
20090192372 July 30, 2009 Say et al.
20090192373 July 30, 2009 Say et al.
20090192374 July 30, 2009 Say et al.
20090192375 July 30, 2009 Say et al.
20090192376 July 30, 2009 Say et al.
20090192377 July 30, 2009 Say et al.
20090192378 July 30, 2009 Say et al.
20090192379 July 30, 2009 Say et al.
20090198115 August 6, 2009 Say et al.
20090198116 August 6, 2009 Say et al.
20090198175 August 6, 2009 Say et al.
20090203964 August 13, 2009 Shimizu et al.
20090203971 August 13, 2009 Sciarappa
20090203972 August 13, 2009 Heneghan
20090203978 August 13, 2009 Say et al.
20090204265 August 13, 2009 Hackett
20090210164 August 20, 2009 Say et al.
20090216101 August 27, 2009 Say et al.
20090216102 August 27, 2009 Say et al.
20090227204 September 10, 2009 Robertson et al.
20090227876 September 10, 2009 Tran
20090227940 September 10, 2009 Say et al.
20090227941 September 10, 2009 Say et al.
20090228214 September 10, 2009 Say et al.
20090231125 September 17, 2009 Baldus
20090234200 September 17, 2009 Husheer
20090243833 October 1, 2009 Huang
20090253960 October 8, 2009 Takenaka et al.
20090256702 October 15, 2009 Robertson
20090264714 October 22, 2009 Chou
20090264964 October 22, 2009 Abrahamson
20090265186 October 22, 2009 Tarassenko et al.
20090273467 November 5, 2009 Elixmann
20090281539 November 12, 2009 Selig
20090295548 December 3, 2009 Ronkka
20090296677 December 3, 2009 Mahany
20090303920 December 10, 2009 Mahany
20090306633 December 10, 2009 Trovato et al.
20090312619 December 17, 2009 Say et al.
20090318761 December 24, 2009 Rabinovitz
20090318779 December 24, 2009 Tran
20090318783 December 24, 2009 Rohde
20090318793 December 24, 2009 Datta
20100010330 January 14, 2010 Rankers
20100049006 February 25, 2010 Magar
20100049012 February 25, 2010 Dijksman et al.
20100049069 February 25, 2010 Tarassenko et al.
20100056878 March 4, 2010 Partin
20100056891 March 4, 2010 Say et al.
20100056939 March 4, 2010 Tarassenko et al.
20100057041 March 4, 2010 Hayter
20100062709 March 11, 2010 Kato
20100063438 March 11, 2010 Bengtsson
20100063841 March 11, 2010 D'Ambrosia
20100069002 March 18, 2010 Rong
20100069717 March 18, 2010 Hafezi et al.
20100081894 April 1, 2010 Zdeblick et al.
20100099967 April 22, 2010 Say et al.
20100099968 April 22, 2010 Say et al.
20100099969 April 22, 2010 Say et al.
20100100077 April 22, 2010 Rush
20100100078 April 22, 2010 Say et al.
20100106001 April 29, 2010 Say et al.
20100118853 May 13, 2010 Godfrey
20100139672 June 10, 2010 Kroll et al.
20100168659 July 1, 2010 Say et al.
20100179398 July 15, 2010 Say et al.
20100185055 July 22, 2010 Robertson
20100191073 July 29, 2010 Tarassenko et al.
20100210299 August 19, 2010 Gorbachov
20100222652 September 2, 2010 Cho
20100228113 September 9, 2010 Solosko
20100234706 September 16, 2010 Gilland
20100234715 September 16, 2010 Shin
20100234914 September 16, 2010 Shen
20100239616 September 23, 2010 Hafezi et al.
20100245091 September 30, 2010 Singh
20100249881 September 30, 2010 Corndorf
20100256461 October 7, 2010 Mohamedali
20100259543 October 14, 2010 Tarassenko et al.
20100268048 October 21, 2010 Say et al.
20100268049 October 21, 2010 Say et al.
20100268050 October 21, 2010 Say et al.
20100274111 October 28, 2010 Say et al.
20100280345 November 4, 2010 Say et al.
20100280346 November 4, 2010 Say et al.
20100295694 November 25, 2010 Kauffman et al.
20100298668 November 25, 2010 Hafezi et al.
20100298730 November 25, 2010 Tarassenko et al.
20100312580 December 9, 2010 Tarassenko et al.
20110009715 January 13, 2011 O'Reilly et al.
20110054265 March 3, 2011 Hafezi et al.
20110065983 March 17, 2011 Hafezi et al.
20110105864 May 5, 2011 Robertson et al.
Foreign Patent Documents
1246356 October 2002 EP
1534054 May 2005 EP
1702553 September 2006 EP
1789128 May 2007 EP
2143369 January 2010 EP
61072712 April 1986 JP
05-228128 September 1993 JP
2000-506410 May 2000 JP
2005073886 March 2005 JP
2005-304880 April 2005 JP
2006509574 March 2006 JP
2007-313340 December 2007 JP
8802237 April 1988 WO
WO8802237 April 1988 WO
WO9308734 May 1993 WO
WO9319667 October 1993 WO
WO9843537 October 1998 WO
WO9959465 November 1999 WO
WO0033246 June 2000 WO
WO0100085 January 2001 WO
01/47466 July 2001 WO
WO0174011 October 2001 WO
WO0180731 November 2001 WO
WO0245489 June 2002 WO
WO02058330 July 2002 WO
WO02062276 August 2002 WO
WO02087681 November 2002 WO
WO03050643 June 2003 WO
WO2004014225 February 2004 WO
WO2004039256 May 2004 WO
WO2004066834 August 2004 WO
WO2004066903 August 2004 WO
WO2004068881 August 2004 WO
WO2004109316 December 2004 WO
WO2005011237 February 2005 WO
2005/020023 March 2005 WO
WO2005024687 March 2005 WO
WO2005047837 May 2005 WO
WO2005051166 June 2005 WO
WO2005110238 November 2005 WO
WO2006027586 March 2006 WO
2006/055892 May 2006 WO
2006/055956 May 2006 WO
WO2006075016 July 2006 WO
WO2006100620 September 2006 WO
2006/104843 October 2006 WO
2006/116718 November 2006 WO
2006/127355 November 2006 WO
2007/001724 January 2007 WO
2007/001742 January 2007 WO
2007/013952 February 2007 WO
2007/014084 February 2007 WO
2007/021496 February 2007 WO
WO2007014527 February 2007 WO
2007/027660 March 2007 WO
2007/028035 March 2007 WO
WO2007028035 March 2007 WO
2007036741 April 2007 WO
2007036746 April 2007 WO
WO2007036687 April 2007 WO
WO2007036741 April 2007 WO
WO2007036746 April 2007 WO
WO2007040878 April 2007 WO
WO2007071180 June 2007 WO
WO2007096810 August 2007 WO
WO2007101141 September 2007 WO
WO2007120946 October 2007 WO
2007130491 November 2007 WO
WO2007127316 November 2007 WO
WO2007127879 November 2007 WO
WO2007128165 November 2007 WO
2007/149546 December 2007 WO
WO2007143535 December 2007 WO
2008/008281 January 2008 WO
WO2008030482 March 2008 WO
2008/052136 May 2008 WO
2008/063626 May 2008 WO
2008/066617 June 2008 WO
WO2008076464 June 2008 WO
WO2008089232 July 2008 WO
WO2008091683 July 2008 WO
2008/095183 August 2008 WO
2008/101107 August 2008 WO
WO2008097652 August 2008 WO
2008/112577 September 2008 WO
2008/112578 September 2008 WO
2008120156 October 2008 WO
WO2008133394 November 2008 WO
WO2008134185 November 2008 WO
2009001108 December 2008 WO
WO2008150633 December 2008 WO
WO2009001108 December 2008 WO
WO2009006615 January 2009 WO
WO2009029453 March 2009 WO
WO2009036334 March 2009 WO
WO2009051829 April 2009 WO
WO2009051830 April 2009 WO
WO2009063377 May 2009 WO
WO2009081348 July 2009 WO
WO2009111664 September 2009 WO
WO2009146082 December 2009 WO
WO2010000085 January 2010 WO
WO2010009100 January 2010 WO
WO2010011833 January 2010 WO
2010019778 February 2010 WO
2010057049 May 2010 WO
WO2010080765 July 2010 WO
WO2010080843 July 2010 WO
WO2010107563 September 2010 WO
WO2010135516 November 2010 WO
WO2011068963 June 2011 WO
WO2011159336 December 2011 WO
WO2011159337 December 2011 WO
WO2011159338 December 2011 WO
WO2011159339 December 2011 WO
Other references
  • Jimbo, H. et al in “Gastric-fluid-utilized microbattery for micro medical devices”, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Nov. 29-Dec. 1, 2006, Berkeley, U.S.A., p. 97-10.
  • Soper, S. A. et al in “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346.
  • Li, P-Y, et al in “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
  • Tierney, M. J., et al in “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
  • Coury, L. “Conductance Measurement Part 1: Theory”, Current Separations, 18:3 (1999), p. 91-96.
  • Watson, S. J. et al in “Determination of the relationship between the pH and conductivity of gastric juice”, Physiol. Meas. 17 (1996) p. 21-27.
  • Soper, S. A. et al in “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346. 2006.
  • Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
  • Philips Respironics (http/minimitter.com/products.cfm) Products, Noninvasive Technology to Help Your Studies Succeed. 510(k) Permanent Notification for Vital Sense. Apr. 22, 2004.
  • Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
  • Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30.
  • Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
  • “Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009).
  • Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTAWeb/documents/ME/ePatchECGEMG.pdf, Dated Sep. 2, 2010.
  • Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
  • Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
  • Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
  • Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band- Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIPIEEEDubaiConference.pdf.
  • Ferguson et al., “Dialectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98.
  • Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581.
  • Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochureGlobalGMB-0118-01.pdf; 4pp.
  • ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. First in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
  • INTROMEDIC, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp).
  • Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
  • NPLAntennaBasics.pdf, Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 3pp.
  • O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
  • Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94.
  • Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
  • Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronicsandtelecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010.
  • “The SmartPill Wireless Motility Capsule” Smartpill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/TheSmartPillCapsule&id=17814.
  • Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
  • U.S. Appl. No. 12/238,345 filed Sep. 25, 2008, Hooman et al., Non-Final Office Action mailed Jun. 13, 2011 22pp.
  • Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20; First in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 24 pp.
  • Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
  • ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. pp. 1-4.
  • Walkey, “MOSFET Struture and Processing”; 97.398* Physical Electronics Lecture 20; pp. 1-24.
  • MacKay et al., Radio telemetering from within the body: Inside information is revealed by tiny transmitters that can be swallowed or implanted in man or animal. Science 1961;134(3486):1196-1202.
  • MacKay et al,. Endoradiosonde. Nature 1957;179(4572):1239-40, 179.
  • Zworkin, A ‘radio pill.’ Nature 1957;179:898.
  • Yao et al., Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues. Proceedings of the 28th IEEE, EMBC Annual International Conference (Aug. 30-Sep. 3, 2006); New York, USA.
  • McKenzie et al., Validation of a new telemetric core temperature monitor. J. Therm. Biol. 2004;29(7-8):605-11.
  • Tatbul et al., Confidence-based data management for personal area sensor networks. ACM International Conference Proceeding Series 2004;72.
  • Zimmerman, Personal Area Networks: Near-field intrabody communication. IBM Systems Journal 1996;35 (3-4):609-17.
  • Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. Sep. 21, 1999.
  • Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004.
  • Mini Mitter Co, Inc. Actiheart. Traditional 510(k) Summary. Sep. 27, 2005.
  • Mini Mitter Co, Inc. VitalSense- Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009.
  • Mini Mitter Co, Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009.
  • Barrie, Heidelberg pH capsule gastric analysis. Textbook of Natural Medicine, 1992, Pizzomo, Murray & Barrie.
  • Carlson et al., Evaluation of a non-invasive respiratory monitoring system for sleeping subjects. Physiological Measurement 1999;20(1):53.
  • Mojaverian et al., Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition. Gastroenterology 1985;89(2):392-7.
  • Xiaoming et al., A telemedicine system for wireless home healthcare based on bluetooth and the internet. Telemedicine Journal and e-health 2004;10(S2):S110-6.
  • Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, pp. 35 of 46.
  • “ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. For Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp.
  • Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract.
  • Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf.
  • Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837.
  • Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band- Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (N.D.); http://www.asic.fh-offenburg.de/downloads/ePille/IFIPIEEEDubaiConference.pdf.
  • Given Imaging, “Agile Patency Brochure” http://www.inclino.no/documents/AgilePatencyBrochureGlobalGMB-0118-01.pdf;(N.D.) 4pp.
  • Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12: 2231-6; abstract.
  • Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html.
  • Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/.
  • “New ‘smart pill’ to track adherence” E-Health-Insider (2010) http://www.e-health-insider.com/news/5910/new‘smartpill’monitorsmedicines.
  • “RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/.
  • “SensiVida minimally invasive clinical systems” Investor Presentation (Oct. 2009) 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf.
  • Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, N.D.; http://www.cumminscollege.org/downloads/electronicsandtelecommunication/Newsletters/Current%20Newsletters.pdf.
  • “The SmartPill Wireless Motility Capsule” SMARTPILL, The Measure of GI Health; http://www.smartpillcorp.com/index.cfm?pagepath=Products/TheSmartPillCapsule&id=17814.
  • Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
  • Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal (Apr. 27, 2010); http://www.rfidjournal.com/article/view/7560/1.
  • University of Florida News “Rx for health: Engineers design pill that signals it has been swallowed” (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
  • Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. 2002, p. 1-43.
  • Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
  • NPLAntennaBasics.pdf, p. 1-3, Date: Jan. 11, 2008.
  • Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. 2000, vol. 39, p. 2396-2407.
  • Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334.
  • Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346, Date: 2006.
  • Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
  • Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
  • Trutag, Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
Patent History
Patent number: 8469885
Type: Grant
Filed: Aug 13, 2009
Date of Patent: Jun 25, 2013
Patent Publication Number: 20100298668
Assignee: Proteus Digital Health, Inc. (Redwood City, CA)
Inventors: Hooman Hafezi (Redwood City, CA), Eric Snyder (South San Francisco, CA), Benedict Costello (Berkeley, CA)
Primary Examiner: Henry M Johnson, III
Assistant Examiner: Marie Archer
Application Number: 12/527,403