Iterative interference suppression using mixed feedback weights and stabilizing step sizes
A receiver is configured for canceling intra-cell and inter-cell interference in coded, multiple-access, spread-spectrum transmissions that propagate through frequency-selective communication channels. The receiver employs iterative symbol-estimate weighting, subtractive cancellation with a stabilizing step-size, and mixed-decision symbol estimate. Receiver embodiments may be implemented explicitly in software of programmed hardware, or implicitly in standard Rake-based hardware either within the Rake (i.e., at the finger level) or outside the Rake (i.e., at the user of subchannel symbol level).
Latest III HOLDINGS 1, LLC Patents:
This application is a continuation of U.S. patent application Ser. No. 13/095,828, filed Apr. 27, 2011, and entitled “Iterative Interference Suppression Using Mixed Feedback Weights and Stabilizing Step Sizes”; which is a continuation of U.S. patent application Ser. No. 12/731,915, filed Mar. 25, 2010, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes”, now U.S. Pat. No. 8,300,745; which is a continuation of U.S. patent application Ser. No. 11/452,027, filed Jun. 13, 2006, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes”, now U.S. Pat. No. 7,715,508; which claims priority to Provisional U.S. Pat. Appl. Ser. No. 60/736,204, filed Nov. 15, 2005, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes,” all of which are incorporated by reference herein in their entirety. The following are related applications, which were incorporated by reference in Provisional U.S. Pat. Appl. Ser. No. 60/736,204: (1) U.S. patent application Ser. No. 11/100,935, filed Apr. 7, 2005, entitled “Construction of Projection Operators for Interference Cancellation,” and published as U.S. Patent Application Publication Number 2005-0180364 A1, which incorporates by reference and is a Continuation-in-Part of (a) U.S. patent application Ser. No. 11/773,777, entitled “Systems and Methods for Parallel Signal Cancellation,” and filed on Feb. 6, 2004, now U.S. Pat. No. 7,394,879; (b) U.S. patent application Ser. No. 10/686,359, entitled “Systems and Methods for Adjusting Phase,” and filed Oct. 15, 2003, now U.S. Pat. No. 7,068,706; (c) U.S. patent application Ser. No. 10/686,829, entitled “Method and Apparatus for Channel Amplitude Estimation and Interference Vector Construction,” and filed on Oct. 15, 2003, now U.S. Pat. No. 7,580,448; (d) U.S. patent application Ser. No. 10/294,834, entitled “Construction of an Interference Matrix for a Coded Signal Processing Engine,” and filed on Nov. 15, 2002, now U.S. Pat. No. 7,200,183; and (e) U.S. patent application Ser. No. 10/247,836, entitled “Serial Cancellation Receiver Design for a Coded Signal Processing Engine,” and filed on Sep. 20, 2002, now U.S. Pat. No. 7,158,559; (2) U.S. patent application Ser. No. 11/233,636, filed Sep. 23, 2005, entitled “Optimal Feedback Weighting for Soft-Decision Cancellers,” and published as U.S. Patent Application Publication Number 2006-0227909 A1; and (3) U.S. patent application Ser. No. 11/266,928, filed Nov. 4, 2005, entitled “Soft Weighted Subtractive Cancellation for CDMA Systems,” now U.S. Pat. No. 7,876,810; the entirety of each of the foregoing patents, patent applications, and patent application publications is incorporated by reference herein.
BACKGROUND1. Field of the Invention
The present invention relates generally to iterative interference cancellation in received wireless communication signals and, more particularly, to cancellation of intra-cell interference and/or inter-cell interference in coded spread spectrum communication systems.
2. Discussion of the Related Art
In an exemplary wireless multiple-access system, a communication resource is divided into code-space subchannels that are allocated to different users. A plurality of sub channel signals received by a wireless terminal (e.g., a subscriber unit or a base station) may correspond to different users and/or different sub channels allocated to a particular user.
If a single transmitter broadcasts different messages to different receivers, such as a base station in a wireless communication system broadcasting to a plurality of mobile terminals, the channel resource is subdivided in order to distinguish between messages intended for each mobile. Thus, each mobile terminal, by knowing its allocated subchannel(s), may decode messages intended for it from the superposition of received signals. Similarly, a base station typically separates received signals into subchannels in order to differentiate between users. In a multipath environment, received signals are superpositions of time-delayed and complex-scaled versions of the transmitted signals. Multipath can cause several types of interference. Intra-channel interference occurs when the multipath time-delays cause subchannels to leak into other subchannels. For example, in a forward link, subchannels that are orthogonal at the transmitter may not be orthogonal at the receiver. When multiple base stations (or sectors or cells) are active, there may also be inter-channel interference caused by unwanted signals received from other base stations. Each of these types of interference can degrade communications by causing a receiver to incorrectly decode received transmissions, thus increasing a receiver's error floor. Interference may also have other deleterious effects on communications. For example, interference may lower capacity in a communication system, decrease the region of coverage, and/or decrease maximum data rates. For these reasons, a reduction in interference can improve reception of selected signals while addressing the aforementioned limitations due to interference.
These interferences take the following form when code division multiplexing is employed for a communication link, either with code division multiple access (as used in CDMA 2000, WCDMA, and related standards) or with time division multiple access (as used in EV-DO and related standards). A set of symbols is sent across a common time-frequency slot of the physical channel and separated using a set of distinct code waveforms, which are usually chosen to be orthogonal (or pseudo-orthogonal for reverse-link transmissions). The code waveforms typically vary in time, and these variations are introduced by a pseudo-random spreading code (PN sequence). The wireless transmission medium is characterized by a time-varying multipath profile that causes multiple time-delayed replicas of the transmitted waveform to be received, each replica having a distinct amplitude and phase due to path loss, absorption, and other propagation effects. As a result, the received code set is no longer orthogonal. The code space suffers from intra-channel interference within a base station as well as inter-channel interference arising from transmissions in adjacent cells.
The most basic receiver architecture employed to combat these various effects is the well-known Rake receiver. The Rake receiver uses a channel-tracking algorithm to resolve the received signal energy onto various multipath delays. These delayed signals are then weighted by the associated complex channel gains (which may be normalized by path noise powers) and summed to form a single resolved signal, which exploits some of the path diversity available from the multipath channel. It is well known that the Rake receiver suffers from a significant interference floor, which is due to both self-interference from the base station of interest (or base stations, when the mobile is in a soft-handoff base station diversity mode) and multiple-access interference from all base stations in the coverage area. This interference limits the maximum data rates achievable by the mobiles within a cell and the number of mobiles that can be supported in the cell.
Advanced receivers have been proposed to overcome the limitations of the Rake receiver. The optimal multi-user detector (MUD) has the best performance, but is generally too computationally complex to implement. MUD complexity increases exponentially with respect to the total number of active sub channels across the cell of interest and the interfering cells as well as the constellation size(s) of the subchannels. This complexity is so prohibitive that even efficient implementations based on the Viterbi algorithm cannot make it manageable in current hardware structures. Another approach is a properly designed linear receiver, which in many channel scenarios, is able to retain much of the optimal MUD performance, but with a complexity that is polynomial in the number of subchannels. The most common examples are the linear minimum mean squared error (LMMSE) receiver and the related decorrelating (or zero-forcing) receiver, which both require finding, or approximating, the inverse of a square matrix whose dimension is equal to the lesser between the number of active sub channels and the length (in samples) of the longest spreading code.
Complexity can still be prohibitive with these receivers, because such a matrix inverse needs to be calculated (or approximated) for each symbol. These receivers depend not only on the spectral characteristics of the multipath fading channel (which could be slowly time varying), but also on the time-varying spreading codes employed on the subchannels over each symbol. Thus, these receivers vary at the symbol rate even if the channel varies much more slowly.
An alternative approach currently under development for advance receivers sidesteps the need to invert a matrix for each symbol. It accomplishes this by employing a PN-averaged LMMSE (PNA-LMMSE) receiver that assumes the PN code is random and unknown at the receiver (at least for determining the correlation matrix). While this receiver is generally inferior to the LMMSE approach, it has the advantage of not having to be implemented directly, because it is amenable to adaptive (or partially adaptive) implementations. The advantages of an adaptive implementation over a direct implementation include reduced complexity and the fact that the additive noise power (i.e., background RF radiation specific to the link environment, noise in the receiver's RF front end, and any processing noise such as noise due to quantization and imperfect filtering) does not have to be estimated. However, these advantages incur the costs associated with adaptive filters (e.g., performance and adaptation rate). Note that a direct implementation without knowledge of the noise power modifies the LMMSE and PNALMMSE receivers into the corresponding decorrelating (or zero-forcing) receivers that arise from taking the background noise power to be zero when deriving the LMMSE and PNA-MMSE receivers.
Another method for further reducing complexity is to iteratively approximate the matrix-inverse functionality of the LMMSE receiver without explicitly calculating the inverse. Receivers of this type employ multistage interference cancellation. One particular type is known as parallel interference cancellation (PIC), and is motivated by well-known iterative techniques of quadratic minimization. In each stage of PIC, the data symbols of the sub channels are estimated. For each sub channel, an interference signal from the other subchannels is synthesized, followed by interference cancellation that subtracts the synthesized interference from each sub channel. The interference-cancelled subchannels are then fed to a subsequent PIC stage. Ideally, within just a few stages (i.e., before the complexity grows too large), the performance rivals that of the full linear receiver using a matrix inverse.
PIC can be implemented in various modes depending on what types of symbol estimates are used for interference cancellation. In a soft-cancellation mode, PIC does not exploit additional information inherent in the finite size of user constellations. That is, estimates of data symbols are not quantized to a constellation point when constructing interference signals. However, in some multiple-access schemes, the user constellations maybe known (e.g., in an EV-DO link or in a WCDMA link without HSDPA users) or determined through a modulation classifier. In such cases, it is possible for PIC to be implemented in a hard-cancellation mode. That is, estimates of data symbols are quantized to constellation points (i.e., hard decisions) when constructing the interference signal.
In a mixed-cancellation mode, PIC employs a soft decision on each symbol whose constellation is unknown, and either a soft or hard decision on each symbol whose constellation is known, depending on how close the soft estimate is to the hard decision. Such a mixed-decision PIC typically outperforms both the soft-decision PIC and the hard-decision PIC. Moreover, it can also substantially outperform the optimal LMMSE receiver and promises even greater performance gains over PNA-LMMSE approaches currently under development for advanced receivers. The performance of soft-decision PIC is bounded by the optimal LMMSE.
SUMMARY OF THE INVENTIONIn view of the foregoing background, embodiments of the present invention may provide a generalized interference-canceling receiver for canceling intra-channel and inter-channel interference in coded, multiple-access, spread-spectrum transmissions that propagate through frequency-selective communication channels. Receiver embodiments may employ a designed and/or adapted soft-weighting subtractive cancellation with a stabilizing step-size and a mixed-decision symbol estimator. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard Rake-based hardware, either within the Rake (i.e., at the finger level) or outside the Rake (i.e., at the sub channel symbol level). Embodiments of the invention may be employed in user equipment on the forward link and/or in a base station on the reverse link.
Some embodiments of the invention address the complexity of the LMMSE approach by using a low-complexity iterative algorithm. Some embodiments of the invention in soft-mode may be configured to achieve LMMSE performance (as contrasted to the lesser-performing PNA-LMMSE) using only quantities that are easily measured at the receiver. Some embodiments address the sub-optimality of the LMMSE and PNA-LMMSE approaches by using an appropriately designed mixed-decision mode and may even approach the performance of an optimal multi-user detector. In some embodiments, stabilizing step sizes may be used to enhance stability of various PIC approaches. Some embodiments may employ symbol-estimate weighting to control convergence of various PIC approaches. Some embodiments of the invention address the limitation of various PIC approaches to binary and quaternary phase shift keying in mixed-decision mode by being configurable to any sub channel constellation. Some embodiments of the invention address the difficulty of efficiently implementing various PIC approaches in hardware by using a modified Rake architecture. Some embodiments of the invention address the so-called “ping-pong effect” (i.e., when the symbol error rate oscillates with iteration) in various PIC approaches by pre-processing with a de-biasing operation when making symbol estimates.
In one embodiment of the invention, an iterative interference cancellation system is configured for performing a plurality of iterations for each input symbol estimate of a received signal to produce an interference-cancelled symbol estimate. The system comprises a weighting means, a synthesizing means, a subtraction means, a stabilizing step size means, a combining and resolving means, and a mixed-decision means.
The weighting means applies symbol weights to each of a plurality of input symbol estimates for an initial iteration, and to each of a plurality of updated symbol estimates for at least one subsequent iteration for producing a plurality of weighted symbol estimates.
The weighting means may include, by way of example, but without limitation, a weight-calculation means configured for producing symbol weights, and a multiplier configured for multiplying symbol estimates by the weights.
The weight-calculation means may include, by way of example, but without limitation, any combination of hardware and software configured to calculate symbol weights from a function employing a merit of at least one input symbol decision. In one embodiment, the merit may comprise an average ratio of signal power to interference-plus-noise power (or a function thereof). In another embodiment, the merit may be a function of input symbol decisions and proximity of those input symbol decisions to a nearby constellation point. In this case, the weight-calculation means may employ time-series averaging for calculating the proximity as a statistical average. In yet another embodiment, the weight-calculation means may include a signal processing means configured to perform statistical signal processing for estimating the average ratio of signal power to interference-plus-noise power. Such statistical signal processing may employ error-vector magnitude calculations.
The synthesizing means is configured for employing a signal basis for all symbol sources in the channel to synthesize constituent signals from the plurality of weighted symbol estimates. The synthesizing means may combine the constituent signals for producing a combined signal. The combined signal may be considered as approximating a received signal that would result from signals transmitted by at least one hypothetical transmitter configured to transmit signals synthesized from the plurality of weighted symbol estimates.
The synthesizing means may include, by way of example, but without limitation, a signal processor or a set of elements of a transmitter configured to process symbol estimates for producing at least one modulated digital baseband signal, such as a signal that may be produced by a transmitter prior to up-conversion, amplification, and coupling into a communication channel. In one embodiment, the synthesizing means comprises a Walsh coder (such as a fast Walsh transform) and a pseudo-noise (PN) coder.
The subtraction means is configured to subtract the combined signal from the received signal to produce an error signal. The subtraction means may include, by way of example, but without limitation, an adder, a combiner, or any other device or method configured for subtracting a first set of signals from a second set of signals.
The stabilizing step size means is configured for scaling the error signal by a stabilizing step size to produce a scaled error signal. The stabilizing step size means may include, by way of example, but without limitation, any combination of hardware and software configured to scale an error signal with a scaling factor that may be used for controlling convergence in an iterative canceller. For example, the stabilizing step-size means may comprise a step size calculation means and a multiplier means for scaling an error signal with the step size.
The step size calculation means is configured for calculating a stabilizing step size having a magnitude that is a function of proximity of the input symbol decisions to a desired interference-cancelled symbol decision. The multiplier means is configured for scaling (e.g., multiplying) an error signal with the stabilizing step size. The step size calculation means may include, by way of example, but without limitation, software or programmable hardware configured for calculating a stabilizing step size.
The combining and resolving means is configured for processing the scaled error signal with the constituent signals and/or the plurality of weighted symbol estimates to produce interference-cancelled symbol estimates. The combining and resolving means may comprise a combining means separate from a resolving means. The resolving means may precede or follow the combining means.
The resolving means is configured for resolving a scaled error signal or each of a plurality of interference-cancelled constituent signals onto a signal basis for all of symbol sources in a channel. The resolving means may include, by way of example, but without limitation, a channel estimator, a PN decoder, and a Walsh decoder.
The combining means may be configured for combining the resolved error signal with the weighted input symbol estimates, or it may be configured for adding the constituent signals to the scaled error signal. The combining means may include, by way of example, but without limitation, an adder or combiner configured to sum a plurality of input signals.
The mixed-decision means is configured to perform a mixed decision comprising a hard decision or a soft decision on each of the interference-cancelled symbol estimates to produce the plurality of updated symbol estimates. The mixed-decision processing means may include, by way of example, but without limitation, a combination of hardware and software configured to produce soft and/or hard symbol estimates. The mixed-decision means comprises a de-biasing means configured for scaling the input symbol estimates with a scale factor to remove bias computed on the input symbol estimates, and a processing means configured for processing each de-biased input symbol estimate, irrespective of other symbol estimates. The processing means produces a hard decision that quantizes the de-biased input symbol estimate onto a nearby constellation point, or a soft decision that scales the de-biased input symbol estimate.
Embodiments of the invention may be employed in any receiver configured to support one or more CDMA standards, such as (1) the “TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband and Spread Spectrum Cellular System” (the IS-95 standard), (2) the “TIA-98-C Recommended Minimum Standard for Dual-Mode Wideband Spread Spectrum Cellular Mobile Station” (the IS-98 standard), (3) the standard offered by a consortium named “3rd Generation Partnership Project” (3GPP) and embodied in a set of documents including Document Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214 (the WCDMA standard), (4) the standard offered by a consortium named “3rd Generation Partnership Project 2” (3GPP2) and embodied in a set of documents including “TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems,” the “C.S0005-A Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems,” and the “C.S0024 CDMA2000 High Rate Packet Data Air Interface Specification” (the CDMA2000 standard), (5) Multi-Code CDMA systems, such as High-Speed-Downlink-Packet-Access (HSDPA), and (6) other CDMA standards.
Receivers and cancellation systems described herein may be employed in subscriber-side devices (e.g., cellular handsets, wireless modems, and consumer premises equipment) and/or server-side devices (e.g., cellular base stations, wireless access points, wireless routers, wireless relays, and repeaters). Chipsets for subscriber-side and/or server-side devices may be configured to perform at least some of the receiver and/or cancellation functionality of the embodiments described herein.
These and other embodiments of the invention are described with respect to the figures and the following description of the preferred embodiments.
Embodiments according to the present invention are understood with reference to the schematic block diagrams of
Various functional elements or steps, separately or in combination, depicted in the figures may take the form of a microprocessor, digital signal processor, application specific integrated circuit, field programmable gate array, or other logic circuitry programmed or otherwise configured to operate as described herein. Accordingly, embodiments may take the form of programmable features executed by a common processor or discrete hardware unit.
DESCRIPTION OF THE PREFERRED EMBODIMENTSThe present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
First the invention will be described as it applies to a forward-link channel, and then extended to include reverse-link channels. The following formula represents an analog baseband signal received at a mobile from multiple base stations, each with its own multipath channel,
with the following definition
-
- (0, T) is the symbol internal;
- B is the number of modeled base stations and is indexed by the subscript (s) which ranges from (0) to (B−1); here, and in the sequel, the term “base stations” will be employed loosely to include cells or sectors;
- L(s) is the number of resolvable (or modeled) paths from base station (s) to the mobile;
- α(s), l and τ(s), l are the complex gain and delay, respectively, associated with the l-th path of base station (s);
- K(s) is the number of active users or subchannels in base station (s) that share a channel via code-division multiplexing; these users or subchannels are indexed from 0 to K(s)−1;
- u(s), k(t) is a code waveform (e.g., spreading waveform) of base station (s) used to carry the kth user's symbol for the base station (e.g., a chip waveform modulated by a user-specific Walsh code and covered with a base-station specific PN cover);
- b(s), k is a complex symbol transmitted for the kth user or subchannel of base station (s);
- and w(t) is zero-mean complex additive noise that contains both thermal noise and any interference whose structure is not explicitly modeled (e.g., inter-channel interference from unmodeled base stations and/or intra-channel interference from unmodeled paths).
Typically a user terminal (e.g., a handset) is configured to detect only symbols transmitted from its serving base station (e.g., the symbols from base station (0)) or a subset thereof (e.g., symbols for the kth user of base station (0)). Interference can impede the determination of b(s), k from y(t). Not only is additive noise w(t) present, but there may be intra-channel and inter-channel interference.
Intra-channel interference typically occurs when multiple users are served by a given base station (i.e., a serving base station). Even if the user's transmitted code waveforms are orthogonal, multipath in the transmission channel causes the codes to lose their orthogonality. Inter-channel interference is caused by transmissions from non-serving base stations whose signals contribute to the received baseband signal y(t).
The advanced signals are scaled 212-213 by corresponding path gains
prior to combining 214 to produce a combined signal of the form
where
is the Euclidean norm of the path-gain vector,
and the superscript T denotes the matrix transpose operator.
The combined signal is resolved onto the users' code waveforms by correlative despreading, which comprises multiplying 215-216 the combined signals by complex conjugates of each code waveform, followed by integrating 217-218 the resultant products. A despread signal corresponding to a kth code waveform is
This value is also referred to as a Rake front-end soft estimate of the symbol b(s), k. Since Rake processing, combining, and despreading are linear operations, their order may be interchanged. Thus, alternative embodiments may be provided in which the order of the linear operations is changed to produce q(s), k.
A symbol estimator comprises scaling blocks 219-220 and function blocks 221-222, which are configured to refine the estimates q(s), k into front-end symbol estimates {circumflex over (b)}(s), k[0] of the transmitted data symbols b(s), k. Each of the functions depicted in
A plurality K(s) of symbol estimates
1 of transmitted symbols
produced by an ith ICU is input to scaling module 402. The symbol estimates are multiplied 410-411 by corresponding complex weights
to produce weighted symbol estimates
The magnitude of weight γ(s), k[i] may be calculated with respect to a merit of the corresponding symbol estimate {circumflex over (b)}(s), k[i].
The soft weights can be regarded as a confidence measure related to the accuracy of a decision, or symbol estimate. For example, a high confidence weight relates to a high certainty that a corresponding decision is accurate. A low confidence weight relates to a low certainty. Since the soft weights are used to scale decisions, low-valued weights reduce possible errors that may be introduced into a calculation that relies on symbol estimates.
In one embodiment of the invention, the weights γ(s), k[i] may be derived from at least one signal measurement, such as SINR. Clearly, the larger the SINR, the greater the reliability of the corresponding symbol estimate. For example, the weights γ(s), k[i] may be expressed by
where SINR(s), k[i] is s a ratio of average signal power to interference-plus-noise power of a kth user in base station (s) after the ith ICU, and Ck is a non-negative real constant that can be used to ensure some feedback of a symbol estimate, even if its SINR is small. Note that, as the SINR grows large, the weight tends toward unity, meaning that the estimate is very reliable.
The SINR (and thus, the soft weights) may be evaluated using techniques of statistical signal processing, including techniques based on an error-vector magnitude (EVM). Alternatively, a pilot-assisted estimate of the broadband interference-plus-noise floor, together with a user specific estimate of the signal-plus-interference-plus-noise floor, may be used to estimate the SINR values. In another embodiment of the invention, the weights γ(s), k[i] may be expressed as a function of symbol estimates {circumflex over (b)}(s), k[i] such as shown in the following equation
where Re{ } returns the real part of the argument. The statistical expectations E[ ] in the numerator and denominator can be estimated, for example, via time-series averaging. The term slice ({circumflex over (b)}(s), k[i]) represents the symbol estimate {circumflex over (b)}(s), k[i] sliced (i.e., quantized) to the nearest constellation point from which the symbol b(s), k was drawn. This approach is applicable for symbols with known constellations. For example, it is typical for a receiver to know the symbol constellation for a user of interest, but it may not know which constellations are assigned to other users.
In this embodiment, the weights γ(s), k[i] are a function of a symbol estimate's {circumflex over (b)}(s), k[i] proximity to a given constellation point. Thus, a symbol estimate {circumflex over (b)}(s), k[i] that is close to a constellation point is provided with a large weight indicative of a high confidence measure in the symbol estimate's accuracy. For example, if the value {circumflex over (b)}(s), k[i] is a hard-decision estimate of b(s), k (i.e., it is quantized to the nearest constellation point), then its associated weight is γ(s), k[i]=1 which indicates a high degree of confidence in the symbol estimate.
In some embodiments, both Equation 3 and Equation 4 may be used in a receiver to calculate soft weights. Some embodiments of the invention may provide for subset selection to force one or more of the weights to zero. Such embodiments may be expressed as adaptations to Equation 3 and/or Equation 4 expressed by
γ(s),k[i]=0 for some subset of the users. Equation 5
Forcing the weights of some users to zero effectively restricts which user signals are employed for interference cancellation. Some embodiments may provide for canceling only a predetermined number P of strongest users (e.g., users having the largest weight values). The number P may be fixed for all iterations, or it may vary with respect to iteration. In some embodiments, the number P may range from zero (i.e., no interference cancellation) to
(i.e., interference of all users cancelled). In some embodiments, the weights of user signals transmitted from at least one weakest base station are set to zero.
Weighted symbol estimates γ(s), k[i]{circumflex over (b)}(s), k are modulated 510-511 onto corresponding code waveforms u(s), k (t) to produce a plurality K(s) of coded waveforms, which are combined in combining module 512 to produce a synthesized transmission signal
. Channel emulation (including delaying the synthesized transmission 515-516 with channel gains α(s), l) is performed to produce constituent signals corresponding to each finger. A synthesized constituent signal for an lth finger of base station (s) is
When all of the finger constituents are summed, the result is
which is an estimate of the signal that would be received at the mobile if the base stations were to transmit the weighted symbols.
In synthesizing module 522, a plurality K(s) of modulators (such as modulator 531) modulates each weighted symbol γ(s), k[i]{circumflex over (b)}(s), k onto a corresponding code waveform u(s), k (t). Each modulated code waveform is processed by a bank of finger delay elements 532-533 and channel gain scaling elements 534-535 corresponding to the multipath channel of base station (s). The resulting emulated multipath components are combined in combining module 536 to produce an estimated received signal for a kth user of base station (s),
The subscript k on the left-hand side denotes that the constituent signal is for a user k, whereas the subscript l on the left-hand side of Equation 6 represents that the constituent signal is for a finger l. The sum of the user constituent signals produces a synthesized received signal
The left-hand sides of Equation 7 and Equation 9 are the same signal, whereas the right-hand sides are simply two different decompositions.
Canceller 702 includes a block diagram that represents the functionality of each of the cancellers 701-703. The constituent signals corresponding to each base station are summed in a combining module 711 to produce a synthesized received signal,
where {tilde over (γ)}(s), j[i] is a jth constituent signal (either finger or user) for base station (s) A plurality of B of these sums corresponding to different base stations are combined in combining module 721 to produce a synthesized receive signal
The synthesized receive signal is subtracted from the actual received signal in a subtraction module 722 to produce a residual signal y(t)−{tilde over (γ)}[i](t). A stabilizing step size module 723 scales the residual signal by a complex stabilizing step size μ[i] to produce a scaled residual signal μ[i](y(t)−{tilde over (y)}[i](t)). The scaled residual signal is combined with the constituent signals {tilde over (y)}(s), j[i] in combining modules 712-714 to produce a set of interference-cancelled constituents represented by
z(s),j[i](t)≡{tilde over (y)}(s),j[i](t)+μ[i](y(t)−{tilde over (y)}[i](t)), Equation 10
where z(s), j[i](t) is an interference-cancelled jth constituent signal for base stations (s).
In an alternative embodiment, cancellation may be performed with only a subset of the constituent channels. In each base station, only those constituent signals being used for cancellation may be used to synthesize the estimated receive signal for base station (s). Thus, {tilde over (y)}(s)[i] becomes
where J(s)⊂{0, 1, . . . , J(s)−1} are indices of the subset of constituent signals to be employed in cancellation. Embodiments of the invention may be configured for applications in which hardware limitations restrict the number of finger signals or user signals that can be used for interference cancellation (e.g., only the strongest constituents are used).
The interference-cancelled signals produced by the canceller shown in
Interference cancelled signals z(s), l[i](t) are time-advanced 810-811 by an amount τ(s), l. A maximal ratio combining module scales 812-813 each time-advanced a signal z(s), l[i](t+τ(s), l) by α(s), l*/∥α(s)∥ and combines 814 the time-advanced signals for each base station. A resolving module comprising multipliers 815-816 and integrators 817-818 resolves each combined signal
onto code waveforms associated with base station (s) via correlative despreading. The resulting quantity for a kth user of base station (s) is denoted by
Interference cancelled signals z(s), k[i](t) corresponding to a kth user and sth base station are processed by a plurality L(s) of time-advance modules 831-832 corresponding to the multipath channel for the sth base station. The resulting time-advanced signals
are weighted by a plurality of weighting modules 833-834, and the weighted signals are combined in combiner 835. A resolving module comprising multiplier 836 and integrator 837 resolves the combined signal onto the kth user's code waveform to give
The values {tilde over (b)}(s), k[i] shown in Equation 11 and Equation 12 are generally not the same value, since the value of {tilde over (b)}(s), k[i] in Equation 11 is produced by cancellation employing finger constituents, whereas {tilde over (b)}(s), k[i] expressed by Equation 12 is produced by cancellation employing user constituents.
Input constituent signals {tilde over (y)}(s), j[i](t) for all values of j are subtracted 911 from the received signal y(t) to produce a difference signal, or error signal, representing the difference between the received signal and the synthesized estimates of signals received by the base stations. For base station (s), the difference signal is y(t)−{tilde over (y)}(s)[i](t), where
The difference signal for base station (s) is processed by a parallel bank of time advance modules 912-913 associated with the multipath channel for that base station, followed by maximal-ratio combining. In this embodiment, a maximal-ratio combining module is configured to perform weighting 914-915 and combining 916. A resolving module comprising multipliers 917-918 and integrators 919-920 resolves the resulting combined signals onto code waveforms of the base station's users to give the difference signal vector, or error signal vector, q(s), k−{tilde over (q)}(s), k[i], where
and z(s)[i](t) was defined in Equation 10.
Rake despreading, such as described with respect to the exemplary Rake despreading module 902, may also be accomplished explicitly by employing matrix multiplication to synthesize constituent signals of the received signal, such as represented by block 931 shown in
A diagonal soft-weighting matrix may be defined as
in which all of the users' soft weights are ordered first by base station and then by users within a base station. The same indexing may also be used to express the column vector of symbol estimates input to an ith ICU as
The weighted symbol estimates are expressed as Γ[i]b[i], and the outputs of the Rake despreading modules 901-903 are expressed by the difference equation,
The values of q[i] represent the despread signals, such as described with respect to
is employed for ordering users (first by base station, and then by users within a base station) described with respect to Equation 14. Thus, κ=0 corresponds to a first user (denoted by index zero) of a first base station (denoted by an index zero), and κ=K corresponds to a last user (denoted by index K(B-1)−1) of a last base station (denoted by index (B−1)). If a user κ is a member of base station (s) and a user κ′ is a member of base station (s′), then the (κ, κ′) element of matrix R may be expressed by
Thus, the elements of R can be built at the receiver with estimates of the path gains, path delays, and knowledge of the users' code waveforms.
{tilde over (b)}[i+1]=FΓ[i]{circumflex over (b)}[i]+μ[i](q−{tilde over (q)}[i]). Equation 20
The choice of F allows interference cancellation after despreading to mimic interference cancellation prior to despreading for either user constituents or finger constituents. For user constituents, F=I. For finger constituents, F is a block-diagonal matrix with a plurality B of diagonal blocks, wherein an sth diagonal block is a K(s)×K(s) block representing the users' transmit correlation matrix for base station (s). The (k, k′) element of the sth diagonal block (denoted by F(s)(s)) is equal to Equation 21
(F(s)(s))kk′=∫u(s),k(t)u(s),k′*(t)dt. Equation 21
The stabilizing step size μ[i] may be used to enhance interference cancellation in each ICU and/or stabilize iterative interference cancellation. A quality metric of a canceller's output {tilde over (b)}[i+1] may be derived as follows. If it is known (or approximated) that the additive noise w(t) in Equation 1 is Gaussian, then the despread outputs q, conditional on the transmitted symbols
are jointly complex normal random variables with mean Rb and covariance Γ[i]R (i.e., q|b is distributed as CN(Rb; R)). If it is approximated that q|{tilde over (b)}[i+1] is distributed as CN(R{tilde over (b)}[i+1]; R), where {tilde over (b)}[i+1] and its dependence on μ[i] are given by Equation 20, then the value of μ[i] that fives the maximum-likelihood soft estimate for {tilde over (b)}[i+1] is
Alternatively, the value of μ[i] that gives the maximum-likelihood soft estimate for Γ[i]{tilde over (b)}[i+1] is
Different formulations of the step-size may be used within the same IIC. For example, a step size based on Equation 23 may be used in a sequence of ICUs and Equation 24 may be used in the last ICU of the sequence. The Equations 23 and 24 may be adapted for cases in which there is no soft weighting (i.e., when Γ[i]=I). Similarly step-size equations may be adapted when constituent user signals are employed (i.e., F=I). Furthermore, Equation 23 and Equation 24 may be determined implicitly whenever F=I, or when F is approximated as I. Since F contains the users' correlation matrices at the transmitter for each base station as its block diagonal, it will approximately equal identity, as the users' code waveforms are typically designed to be mutually orthogonal (or quasi-orthogonal for the reverse link). Any non-orthogonality is due to the finite duration of the pulse-shaping filters that approximate their infinite duration theoretical counterparts. In this case, Equation 23 becomes
to produce an estimated received signal RΓ[i]{circumflex over (b)}[i]. A combiner 1103 calculates the difference between the outputs of 1101 and 1102 to produce a difference signal, or error signal, β[i]≡q−RΓ[i]{circumflex over (b)}[i], whose elements are indexed first by base station, and then by users within a base station,
Alternatively, since the operations used to produce β[i] are linear, a difference signal y(t)−{tilde over (y)}(s)[i](t) may be produced prior to despreading, such as shown by block 1110 in
The norm-square of β[i] i.e., ∥β[i]∥2) is evaluated 1104 to generate the numerator in Equation 25. The elements of β[i] are processed 1105 to produce a synthesized received signal
and the norm square of this signal is calculated 1106 to produce the denominator of Equation 25.
The signal β[i] is generated by a Rake, maximal ratio combining, and despreading unit 1120 and multiplied 1121 by Γ[i] to produce vector Γ[i]β[i]. A synthesis module 1122 processes the vector Γ[i]β[i] to produce a synthesized receive vector, which is norm-squared 1123 to produce the denominator of Equation 26.
A synthesized received signal is generated 1124 from the vector (Γ[i])2β[i] and processed with received signal y(t) by an adder 1125 to produce a difference signal. A Rake/combiner/despreader 1126 processes the difference signal to generate the vector q−R(Γ[i])2{circumflex over (b)}[i]. The inner product 1127 between this vector and the vector Γ[i]β[i] gives the numerator of Equation 26.
In an alternative embodiment, the stabilizing step size may be derived from the multi path channel gains,
where μ[i] is fixed for every ICU and C, p and r are non-negative constants.
The de-biasing constant may be expressed by
d(s),k[i]=1 if the symbol constellation is unknown Equation 30
where the statistical expectations may be approximated by time-averaging. De-biasing helps mitigate the “ping-pong” phenomenon often associated with iterative interference cancellation in which the symbol error rate oscillates with respect to iterations. After de-biasing, each value s(s), k[i]{tilde over (b)}(s), k[i+1] is operated on by a map Ψ(s), k that takes the input into the complex plane to yield the updated symbol estimate
The map Ψ(s), k may be a mixed-decision map, which is a combination of soft and hard decisions. A soft-decision map is provided by a function Ψ(s), k(x) that is a continuous function whose output ranges over the complex plane. Common examples, include, but are not limited to,
for positive real-valued constants a(s), k and c(s), k. The expression Re{●} returns the real part of its argument, and Im{●} returns the imaginary part of its argument. A hard decision map is provided when Ψ(s), k(x) slices the input so that the output is an element from the complex symbol constellation employed by the kth user of base station (s),
Ψ(s),khard(x)=slice(x). Equation 33
The slicer quantizes its argument x to the nearest constellation symbol according to some metric (e.g., Euclidean distance), A hard decision is applicable only to those symbols whose constellations are known to the receiver.
A mixed-decision map Ψ(s), kmixed(x) produces an output that is a soft decision or a hard decision, such as
The mixed-decision map Ψ(s), kmixed(x) produces a hard decision if the SINR of a kth user of base station (s) exceeds a threshold c(s), k. Otherwise, a soft decision is performed. The SINR may be estimated with a time-averaged error-vector measurement (EVM). Time averaging may cause a block of symbols to share the same SINR estimate.
An alternative mixed-decision map Ψ(s), kmixed(x) may act on individual symbols,
where the constellation space for the symbol of a kth user of base station (s) is partitioned into hard- and soft-decision regions with C(s), k(b) denoting the hard-decision region for a symbol b from that user's constellation. If xεC(s), k(b), then a hard decision for x is made. One embodiment for defining C(s), k(b) is to include all points within a predetermined distance of b in the constellation space,
C(s),k(b)={x:distance(x,b)<c(s),k(b)}, Equation 36
where any distance metric may be used (e.g., |x−b|p for some p>0) and the radii c(s), k(b) over the set of constellation points b are chosen such that the hard-decision regions are non-overlapping. Alternative embodiments of the invention may employ different partitions of the constellation space. For example, edge constellation points may be given unbounded hard-decision regions.
Both the average SINR and instantaneous approaches are applicable to any known constellation; they need not be restricted to BPSK, QPSK, or even QAM. Either of these mixed-decision approaches may be performed with the additional constraint that the receiver knows only the constellation employed for a subset of the active codes. Such situations may arise in EV-DO and HSDPA networks. In such cases, the receiver may use soft decisions for codes employing an unknown modulation. Those skilled in the art will understand that a modulation classification of these codes may be performed, which may be particularly useful in systems wherein all interfering codes share the same unknown constellation.
The following algorithm, which is illustrated in
Notation:
The iteration index is represented by a superscript [i]; i=1 is the initialization; i=0 corresponds to the output of the front-end processor; and i>0 corresponds to the i-th ICU.
DEFINITIONS
-
- b in Equation 22
- {circumflex over (b)}[i] is in Equation 31
- q is in Equation 17
- R is in Equation 19
- F is I or as in Equation 21
- Γ[i] is in Equation 14 with elements defined in Equation 3-Equation 5
- μ[i] is defined in Equation 23-Equation 27
- Ψ maps each argument to a complex number to implement de-biasing as in Equation 28-Equation 30 and then symbol estimation as in Equation 32-Equation 36
Initializations:
{circumflex over (b)}[−1]=0, a K×1 zero vector
Iterations:
Index i=1, 0, 1, . . . , M−1, where M is the number of times to iterate the succeeding update equation
Update Equation: {circumflex over (b)}[i−1]=Ψ{μ[i](q−RΓ[i]{circumflex over (b)}[i])+FΓ[i]{circumflex over (b)}[i]}
Output:
{circumflex over (b)}={circumflex over (b)}[M], the symbol estimates after M iterations of the update equation.
Although embodiments of the invention are described with respect to forward-link channels, embodiments may be configured to operate in reverse-link channels. In the reverse link, different users' transmissions experience different multipath channels, which requires appropriate modifications to Rake processing and signal synthesis. For example, a front-end processor may incorporate one Rake for every user in every base station rather than a single Rake per base station. Similarly, a separate multipath channel emulator may be employed for imparting multipath delays and gains to each user's signal. Accordingly, the number of constituent finger signals will equal the sum over the number of multipath fingers per user per base station, rather than the sum over the number of multipath fingers per base station.
It is clear that this algorithm may be realized in hardware or software and there are several modifications that can be made to the order of operations and structural flow of the processing.
Those skilled in the art should recognize that method and apparatus embodiments described herein may be implemented in a variety of ways, including implementations in hardware, software, firmware, or various combinations thereof. Examples of such hardware may include Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), general-purpose processors, Digital Signal Processors (DSPs), and/or other circuitry. Software and/or firmware implementations of the invention may be implemented via any combination of programming languages, including Java, C, C++, Matlab™, Verilog, VHDL, and/or processor specific machine and assembly languages.
Computer programs (i.e., software and/or firmware) implementing the method of this invention may be distributed to users on a distribution medium such as a SIM card, a USB memory interface, or other computer-readable memory adapted for interfacing with a consumer wireless terminal. Similarly, computer programs may be distributed to users via wired or wireless network interfaces. From there, they will often be copied to a hard disk or a similar intermediate storage medium. When the programs are to be run, they may be loaded either from their distribution medium or their intermediate storage medium into the execution memory of a wireless terminal, configuring an onboard digital computer system (e.g., a microprocessor) to act in accordance with the method of this invention. All these operations are well known to those skilled in the art of computer systems.
The functions of the various elements shown in the drawings, including functional blocks labeled as “modules” may be provided through the use of dedicated hardware, as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be performed by a single dedicated processor, by a shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “module” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor DSP hardware, read-only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional and/or custom, may also be included. Similarly, the function of any component or device described herein may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
The method and system embodiments described herein merely illustrate particular embodiments of the invention. It should be appreciated that those skilled in the art will be able to devise various arrangements, which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are intended to be only for pedagogical purposes to aid the reader in understanding the principles of the invention. This disclosure and its associated references are to be construed as applying without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Claims
1. An interference suppression method, comprising:
- receiving a plurality of constituent signals;
- combining the plurality of constituent signals to produce a synthesized received signal;
- subtracting the synthesized received signal from a received signal to produce a residual signal; and
- scaling the residual signal by a stabilizing step size to produce a scaled residual signal.
2. The method of claim 1, further comprising combining the scaled residual signal with the plurality of constituent signals to form a plurality of interference-suppressed constituent signals.
3. The method of claim 1, further comprising combining the scaled residual signal with a subset of the plurality of constituent signals to form at least one interference-suppressed constituent signal.
4. The method of claim 2, further comprising:
- time-advancing at least one of the plurality of interference-suppressed constituent signals to produce at least one time-advanced signal;
- weighting the at least one time-advanced signal; and
- combining the time-advanced signals corresponding to a first user to produce a first combined user signal.
5. The method of claim 1, further comprising generating, by a Rake receiver, the plurality of constituent signals from the received signal.
6. The method of claim 1, further comprising advancing the received signal by a plurality of multipath-delay quantities to produce the plurality of constituent signals.
7. The method of claim 6, further comprising scaling the plurality of advanced signals by corresponding path gains prior to said combining.
8. The method of claim 1, further comprising multiplying the synthesized received signal by complex conjugates of a plurality of users' coded waveforms and integrating the resultant products to despread the synthesized received signal.
9. A non-transitory computer-readable storage medium, comprising a plurality of instructions, that in response to being executed, cause a receiver to:
- combine a plurality of constituent signals for a received multiple-access communications signal to produce a synthesized received signal;
- subtract the synthesized received signal from the received multiple-access communications signal to produce a residual signal; and
- scale the residual signal by a stabilizing step size to produce a scaled residual signal.
10. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions in response to being executed, further cause the receiver to combine the scaled residual signal with the plurality of constituent signals to form a plurality of interference-suppressed constituent signals.
11. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions in response to being executed, further cause the receiver to combine the scaled residual signal with a subset of the plurality of constituent signals to form at least one interference-suppressed constituent signal.
12. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions in response to being executed, further cause the receiver to:
- time-advance at least one of the plurality of interference-suppressed constituent signals to produce at least one time-advanced signal;
- weight the at least one time-advanced signal; and
- combine the time-advanced signals corresponding to a first user to produce a first combined user signal.
13. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions in response to being executed, further cause the receiver to advance the received multiple-access communications signal by a plurality of multipath-delay quantities to produce the plurality of constituent signals.
14. The non-transitory computer-readable storage medium of claim 13, wherein the plurality of instructions in response to being executed, further cause the receiver to scale the plurality of advanced signals by corresponding path gains prior to combining the plurality of constituent signals.
15. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions in response to being executed, further cause the receiver to multiply the synthesized received signal by complex conjugates of a plurality of users' coded waveforms and integrating the resultant products to despread the synthesized received signal.
16. A receiver, comprising:
- a front-end configured to receive a signal and generate a plurality of constituent signals for the received signal; and
- an interference suppressor configured to: receive the plurality of constituent signals; combine the plurality of constituent signals to produce a synthesized received signal; subtract the synthesized received signal from the received signal to produce a residual signal; and scale the residual signal by a stabilizing step size to produce a scaled residual signal.
17. The receiver of claim 16, wherein the interface suppressor is further configured to combine the scaled residual signal with the plurality of constituent signals to form a plurality of interference-suppressed constituent signals.
18. The receiver of claim 17, wherein the interface suppressor is further configured to:
- time-advance at least one of the plurality of interference-suppressed constituent signals to produce at least one time-advanced signal;
- weight the at least one time-advanced signal; and
- combine the time-advanced signals corresponding to a first user to produce a first combined user signal.
19. The receiver of claim 16, wherein the front end comprises a Rake receiver configured to generate the plurality of constituent signals.
20. The receiver of claim 19, wherein the Rake receiver is further configured to produce the plurality of constituent signals by:
- advancing the received signal by a plurality of multipath-delay quantities to obtain a plurality of advance signals; and
- scaling the plurality of advanced signals by corresponding path gains to obtain the plurality of constituent signals.
5271042 | December 14, 1993 | Borth et al. |
5349609 | September 20, 1994 | Tsujimoto |
5423045 | June 6, 1995 | Kannan et al. |
5467368 | November 14, 1995 | Takeuchi et al. |
5553062 | September 3, 1996 | Schilling et al. |
5568411 | October 22, 1996 | Batruni |
5606560 | February 25, 1997 | Malek et al. |
5644592 | July 1, 1997 | Divsalar et al. |
5761237 | June 2, 1998 | Petersen et al. |
6157685 | December 5, 2000 | Tanaka et al. |
6161209 | December 12, 2000 | Moher |
6175588 | January 16, 2001 | Visotsky et al. |
6192067 | February 20, 2001 | Toda et al. |
6208683 | March 27, 2001 | Mizuguchi et al. |
6307901 | October 23, 2001 | Yu et al. |
6320919 | November 20, 2001 | Khayrallah et al. |
6377611 | April 23, 2002 | Hwang |
6404760 | June 11, 2002 | Holtzman et al. |
6414949 | July 2, 2002 | Boulanger et al. |
6426973 | July 30, 2002 | Madhow et al. |
6466611 | October 15, 2002 | Bachu et al. |
6496534 | December 17, 2002 | Shimizu et al. |
6522683 | February 18, 2003 | Smee et al. |
6529495 | March 4, 2003 | Aazhang et al. |
6535554 | March 18, 2003 | Webster et al. |
6546043 | April 8, 2003 | Kong |
6570919 | May 27, 2003 | Lee |
6594318 | July 15, 2003 | Sindhushayana |
6594618 | July 15, 2003 | Azencott |
6647078 | November 11, 2003 | Thomas et al. |
6654618 | November 25, 2003 | Kobayakawa |
6678508 | January 13, 2004 | Koilpillai et al. |
6687723 | February 3, 2004 | Ding |
6690723 | February 10, 2004 | Gose et al. |
6711219 | March 23, 2004 | Thomas et al. |
6714585 | March 30, 2004 | Wang et al. |
6724809 | April 20, 2004 | Reznik |
6741634 | May 25, 2004 | Kim et al. |
6754340 | June 22, 2004 | Ding |
6816541 | November 9, 2004 | Schmidl |
6839390 | January 4, 2005 | Mills |
6850772 | February 1, 2005 | Mottier |
6909742 | June 21, 2005 | Leonosky |
6912250 | June 28, 2005 | Adireddy et al. |
6931052 | August 16, 2005 | Fuller et al. |
6947481 | September 20, 2005 | Citta et al. |
6947506 | September 20, 2005 | Mills |
6956893 | October 18, 2005 | Frank et al. |
6959065 | October 25, 2005 | Sparrman et al. |
6963546 | November 8, 2005 | Misra et al. |
6975669 | December 13, 2005 | Ling et al. |
6975671 | December 13, 2005 | Sindhushayana et al. |
6986096 | January 10, 2006 | Chaudhuri et al. |
6993070 | January 31, 2006 | Berthet et al. |
6996385 | February 7, 2006 | Messier et al. |
7020175 | March 28, 2006 | Frank |
7035316 | April 25, 2006 | Smee et al. |
7035354 | April 25, 2006 | Karnin et al. |
7039095 | May 2, 2006 | Takahashi |
7042929 | May 9, 2006 | Pan et al. |
7051268 | May 23, 2006 | Sindhushayana et al. |
7054354 | May 30, 2006 | Gorokhov et al. |
7069050 | June 27, 2006 | Yoshida |
7072628 | July 4, 2006 | Agashe et al. |
7092464 | August 15, 2006 | Mills |
7133435 | November 7, 2006 | Papasakellariou et al. |
7209511 | April 24, 2007 | Dent |
7298805 | November 20, 2007 | Walton et al. |
7397843 | July 8, 2008 | Grant et al. |
7535969 | May 19, 2009 | Catreux et al. |
7623602 | November 24, 2009 | Guess et al. |
7668125 | February 23, 2010 | Kadous |
7711075 | May 4, 2010 | Guess et al. |
7733941 | June 8, 2010 | McCloud et al. |
7826516 | November 2, 2010 | Guess et al. |
20010017883 | August 30, 2001 | Tirola et al. |
20010053143 | December 20, 2001 | Li et al. |
20020009156 | January 24, 2002 | Hottinen et al. |
20020060999 | May 23, 2002 | Ma et al. |
20020118781 | August 29, 2002 | Thomas et al. |
20020131534 | September 19, 2002 | Ariyoshi et al. |
20020154717 | October 24, 2002 | Shima et al. |
20020159507 | October 31, 2002 | Flaig et al. |
20030005009 | January 2, 2003 | Usman |
20030012264 | January 16, 2003 | Papasakellariou et al. |
20030035469 | February 20, 2003 | Frank et al. |
20030086479 | May 8, 2003 | Naguib |
20030095590 | May 22, 2003 | Fuller et al. |
20030156630 | August 21, 2003 | Sriram et al. |
20030210667 | November 13, 2003 | Zhengdi |
20030219085 | November 27, 2003 | Endres et al. |
20040001537 | January 1, 2004 | Zhang et al. |
20040008765 | January 15, 2004 | Chung et al. |
20040013190 | January 22, 2004 | Jayaraman et al. |
20040076224 | April 22, 2004 | Onggosanusi et al. |
20040095907 | May 20, 2004 | Agee et al. |
20040116078 | June 17, 2004 | Rooyen et al. |
20040146024 | July 29, 2004 | Li et al. |
20040161065 | August 19, 2004 | Buckley et al. |
20040165675 | August 26, 2004 | Ito et al. |
20040190601 | September 30, 2004 | Papadimitriou et al. |
20040196892 | October 7, 2004 | Reznik |
20040234006 | November 25, 2004 | Leung |
20040248515 | December 9, 2004 | Molev Shteiman |
20040264552 | December 30, 2004 | Smee et al. |
20050002445 | January 6, 2005 | Dunyak et al. |
20050013349 | January 20, 2005 | Chae et al. |
20050084045 | April 21, 2005 | Stewart et al. |
20050101259 | May 12, 2005 | Tong et al. |
20050111408 | May 26, 2005 | Skillermark et al. |
20050129107 | June 16, 2005 | Park et al. |
20050152267 | July 14, 2005 | Song et al. |
20050157811 | July 21, 2005 | Bjerke et al. |
20050163196 | July 28, 2005 | Currivan et al. |
20050180364 | August 18, 2005 | Nagarajan et al. |
20050185729 | August 25, 2005 | Mills |
20050190868 | September 1, 2005 | Khandekar et al. |
20050195889 | September 8, 2005 | Grant et al. |
20050213529 | September 29, 2005 | Chow et al. |
20050223049 | October 6, 2005 | Regis |
20050243908 | November 3, 2005 | Heo et al. |
20050259770 | November 24, 2005 | Chen |
20050265465 | December 1, 2005 | Hosur et al. |
20060007895 | January 12, 2006 | Coralli et al. |
20060013289 | January 19, 2006 | Hwang |
20060047842 | March 2, 2006 | McElwain |
20060078042 | April 13, 2006 | Lee et al. |
20060083202 | April 20, 2006 | Kent et al. |
20060125689 | June 15, 2006 | Narayan et al. |
20060126703 | June 15, 2006 | Karna |
20060141933 | June 29, 2006 | Smee et al. |
20060141934 | June 29, 2006 | Pfister et al. |
20060141935 | June 29, 2006 | Hou et al. |
20060142041 | June 29, 2006 | Tomasin et al. |
20060153283 | July 13, 2006 | Scharf et al. |
20060215781 | September 28, 2006 | Lee et al. |
20060227909 | October 12, 2006 | Thomas et al. |
20060229051 | October 12, 2006 | Narayan et al. |
20060245509 | November 2, 2006 | Khan et al. |
20070153935 | July 5, 2007 | Yang et al. |
1179891 | February 2002 | EP |
WO-01-89107 | November 2001 | WO |
WO-02-080432 | October 2002 | WO |
- Ali-Hackl, et al., “Error Vector Magnitude as a Figure of Merit for CDMA Receiver Design,” The 5th European Wireless Conference, Feb. 2004. 7 pages.
- Bejide, et al., “An Iterative Multiuser Detector for DS-CDMA Systems in Multipath Fading Channels,” IEEE Communications Society, Mar. 2004, pp. 54-59. 6 pages.
- Dai, et al., “Iterative Space-Time Processing for Multiuser Detection in Multipath CDMA Channels,” IEEE Transactions on Signal Processing, Sep. 2002, vol. 50, No. 6, pp. 2116-2127. 12 pages.
- Divsalar, et al., “Improved Parallel Interference Cancellation for CDMA,” IEEE Transactions on Communications, Feb. 1998, pp. 258-268, vol. 46., No. 2. 11 pages.
- Guess, Tommy, U.S. Appl. No. 11/451,685, filed Nov. 29, 2009 re Amendment and Response to Office Action with mail date of Jun. 4, 2009. 17 pages.
- Guess, Tommy, U.S. Appl. No. 12/731,779, filed Mar. 25, 2010, re Office Action dated Mar. 25, 2010. 5 pages.
- Guess, Tommy, U.S. Appl. No. 11/451,685, filed Jun. 13, 2006, Non-Final Office Action dated Jun. 4, 2009. 14 pages.
- Guess, Tommy, U.S. Appl. No. 11/451,688, filed Jun. 13, 2006, Non-Final Office Action with mail date of Mar. 23, 2009. 15 pages.
- Guess, Tommy, U.S. Appl. No. 11/451,932, filed Jun. 13, 2006, Non-Final Office Action with mail date of Apr. 3, 2009, 15 pages.
- Guess, Tommy, U.S. Appl. No. 11/475,458, filed Aug. 28, 2006, Non-Final Office Action with mail date of Aug. 17, 2009, 14 pages.
- Guess, Tommy, U.S. Appl. No. 11/491,674, filed Jul. 24, 2006, Response to Non-Final Office Action dated May 13, 2010 Includes Terminal Disclaimer. 17 pages.
- Guess, Tommy, U.S. Appl. No. 12/769,510, filed Apr. 28, 2010, Office Action dated Aug. 30, 2010. 4 pages.
- Guess, Tommy, U.S. Appl. No. 12/916,389, filed Oct. 29, 2010, Office Action dated Jun. 23, 2011, 34 Pages.
- Guess, Tommy, U.S. Appl. No. 11/491,674, filed Jul. 24, 2006 re Non Final Office Action dated Dec. 15, 2009. 14 pages.
- Guo et al., “Linear Parallel Interference Cancellation in Long-Code CDMA,” IEEE Journal on Selected Areas in Communications, Dec. 1999, pp. 2074-2081, vol. 17, No. 12. 8 pages.
- Guo, et al., “A Matrix-Algebraic Approach to Linear Parallel Interference Cancellation in CDMA,” IEEE Transactions on Communications, Jan. 2000, pp. 152-161, vol. 48, No. 1. 10 pages.
- Guo, et al., “MMSE-Based Linear Parallel Interference Cancellation in CDMA,” IEEE Proceedings, 0-7803-4281-X/97, Sep. 1998, pp. 917-921. 5 pages.
- Guo, Yuanbin, “Advanced MIMO-CDMA Receiver for Interference Suppression: Algorithms, System-on-Chip Architectures and Design Methodology,” PhD Thesis, Rice University, May 2005, pp. 165-186. 27 pages.
- Hooli et al., “Chip-Level Channel Equalization in WCDMA Downlink,” EURASIP Journal on Applied Signal Processing 2002:8, pp. 757-770, Mar. 7, 2002. 14 pages.
- International Search Report, dated Apr. 26, 2007, in PCT Application No. US06/42036. 2 pages.
- Jayaweera, Sudharman K. et al., “A RAKE-Based Iterative Receiver for Space-Time Block-Coded Multipath CDMA”, IEEE Transactions on Signal Processing, vol. 52, No. 3, Mar. 2004, pp. 796-806. 11 Pages.
- Kim, et al., “Adaptive Weighted Parallel Interference Cancellation for CDMA Systems,” Electronic Letters, Oct. 29, 1998, V34, No. 22. 2 pages.
- Lin, et al., “Iterative Multiuser Decoding with Maximal Ratio Combining,” Australian Workshop on Communication Theory, (Newcastle, Australia), Feb. 2004, pp. 42-46. 6 pages.
- Lin, et al., “Truncated Maximal Ratio Combining for Iterative Multiuser Decoding,” Australian Workshop on Communication Theory, (Brisbane, Australia), Feb. 2005. 6 pages.
- Marinkovic, Slavica et al., “Space-Time Iterative and Multistage Receiver Structures for CDMA Mobile Communications Systems”, IEEE Journal on Selected Areas in Communications, vol. 19, No. 8, Aug. 2001, pp. 1594-1604. 11 Pages.
- McCloud, Michael, U.S. Appl. No. 12/731,960, filed Mar. 25, 2010, re Office Action dated Mar. 25, 2010. 7 pages.
- McCloud, Michael, U.S. Appl. No. 11/479,401, filed Jun. 29, 2006, Non-Final Office Action with mail date of Jun. 11, 2009. 9 pages.
- McCloud, Michael, U.S. Appl. No. 12/731,960, filed Mar. 25, 2010, Response to Notice to File Corrected Application Papers dated May 19, 2010. 63 Pages.
- Mohamed, Nermin A. et al., “A Low-Complexity Combined Antenna Array and Interference Cancellation DS-CDMA Receiver in Multipath Fading Channels”, IEEE Journal on Selected Areas in Communications, vol. 20, No. 2, Feb. 2002, pp. 248-256. 9 Pages.
- Nagasawa, A. et al., “A Novel Backlight System With the Unified Component”, IDW/AD 2005, vol. 12th, No. vol. 2, pp. 1285-1288. 4 pages.
- Naidu, Prabhakar S., “Modern Digital Signal Processing: An Introduction,” Alpha Science International Ltd., UK, Copyright 2003, pp. 124-126. 6 pages.
- Nambiar, et al., “Iterative Weighted Interference Cancellation for CDMA Systems with RAKE Reception,” Feb. 1999 IEEE 49th, vol. 2, pp. 1232-1236. 5 pages.
- Notification of Transmittal of International Search Report and Written Opinion of the International Searching Authority with mail date of Apr. 26, 2007 re PCT/US2006/042036 filed on Oct. 30, 2006, 3 pages.
- PCT Notification of Transmittal of International Search Report and Written Opinion of International Searching Authority date of mailing Sep. 21, 2007, re Int'l Application No. PCT/US 06/36018. 10 pages.
- PCT Preliminary Report on Patentability dated Mar. 26, 2008 for Int'l. Application No. PCT/US2006/36018 filed on Sep. 15, 2006. 5 Pages.
- PCT Preliminary Report on Patentability dated May 20, 2008 for PCT/US2006/42036 filed on Oct. 30, 2006. 2 pages.
- Persson, et al., “Time-Frequency Localized CDMA for Downlink Multi-Carrier Systems,” IEEE 7th Int. Symp. on Spread-Spectrum Tech. & Appl., Sep. 2-5, 2002, vol. 1, pp. 115-122. 5 pages.
- Ping, et al., “Decision-Feedback Blind Adaptive Multiuser Detector for Synchronous CDMA System,” IEEE Transactions on Vehicular Technology, Jan. 2000, vol. 49, No. 1, pp. 159-166. 8 pages.
- Proakis, John G., “Digital Communications,” McGraw-Hill, 4th edition, 2000, pp. 622-626, 956-959. 10 pages.
- Rasmussen, et al., “A Matrix-Algebraic Approach to Successive Interference Cancellation in CDMA,” IEEE Transactions on Communications, Jan. 2000, vol. 48, No. 1, pp. 145-151. 7 pages.
- Rasmussen, et al., “Convergence Behaviour of Linear Parallel Cancellation in CDMA,” IEEE Global Telecom. Conf. (San Antonio, Texas), Dec. 2001, pp. 3148-3152. 5 pages.
- Rasmussen, et al., “Ping-Pong Effects in Linear Parallel Interference Cancellation for CDMA,” IEEE Transactions on Wireless Communications, Mar. 2003, pp. 357-363, vol. 2, No. 2. 7 pages.
- Sayed, Ali H., “Fundamentals of Adaptive Filtering,” John Wiley & Sons, Inc. Hoboken, NJ, Jun. 2003, pp. 170-171, 174, 187. 7 pages.
- Tan, et al., “Linear Interference Cancellation in CDMA Based on Iterative Techniques for Linear Equation Systems,” IEEE Transactions on Communications, Dec. 2000, vol. 48, No. 12, pp. 2099-2108. 10 pages.
- Verdu, Sergio, “Multiuser Detection,” Cambridge University Press, New York, NY, 1998, pp. 291-306. 18 pages.
- Wang, et al., “Iterative (Turbo) Soft Interference Cancellation and Decoding for Coded CDMA,” IEEE Transactions on Communications, Jul. 1999, pp. 1046-1061, vol. 47, No. 7. 16 pages.
- Wang, Xiaodong et al., “Space-Time Multiuser Detection in Multipath CDMA Channels”, IEEE Transactions on Signal Processing, vol. 47, No. 9, Sep. 1999, pp. 2356-2374. 19 Pages.
- Xue, et al., “Adaptive Multistage Parallel Interference Cancellation for CDMA,” IEEE Journal on Selected Areas in Communications, Oct. 1999, vol. 17, No. 10. 13 pages.
- Yener, et al., “CDMA Multiuser Detection: A Nonlinear Programming Approach,” IEEE Transactions on Communications, Jun. 2002, vol. 50, No. 6, pp. 1016-1024. 9 pages.
Type: Grant
Filed: Jun 7, 2013
Date of Patent: Feb 23, 2016
Patent Publication Number: 20130343498
Assignee: III HOLDINGS 1, LLC (Wilmington, DE)
Inventors: Tommy Guess (Lafayette, CO), Michael L McCloud (Boulder, CO), Vijay Nagarajan (Boulder, CO), Gagandeep Singh Lamba (Thornton, CO)
Primary Examiner: Kevin Kim
Application Number: 13/913,225
International Classification: H03D 1/04 (20060101); H04B 1/7097 (20110101); H04B 1/7107 (20110101); H04B 1/712 (20110101);