Patents Issued in January 6, 2015
-
Patent number: 8928050Abstract: An electronic device can include a semiconductor layer having a primary surface, and a Schottky contact comprising a metal-containing member in contact with a horizontally-oriented lightly doped region within the semiconductor layer and lying adjacent to the primary surface. In an embodiment, the metal-containing member lies within a recess in the semiconductor layer and contacts the horizontally-oriented lightly doped region along a sidewall of the recess. In other embodiment, the Schottky contact may not be formed within a recess, and a doped region may be formed within the semiconductor layer under the horizontally-oriented lightly doped region and have a conductivity type opposite the horizontally-oriented lightly doped region. The Schottky contacts can be used in conjunction with power transistors in a switching circuit, such as a high-frequency voltage regulator.Type: GrantFiled: March 11, 2013Date of Patent: January 6, 2015Assignee: Semiconductor Components Industries, LLCInventors: Gary H. Loechelt, Prasad Venkatraman, Zia Hossain, Gordon M. Grivna
-
Patent number: 8928051Abstract: A method of fabricating a semiconductor device including providing a gate structure on a channel portion of a semiconductor substrate, wherein the gate structure includes at least one gate dielectric on the channel portion of the semiconductor substrate and at least one gate conductor on the at least one gate dielectric. An edge portion of the at least one gate dielectric is removed on each side of the gate structure, wherein the removing of the edge portion of the gate dielectric provides an exposed base edge of the at least one gate conductor and an exposed channel surface of the semiconductor substrate underlying the gate structure. The sidewall of the gate structure is oxidized, which also oxidizes at least one of the exposed base edge of the at least one gate conductor and the exposed channel surface of the semiconductor substrate that is underlying the gate structure.Type: GrantFiled: November 20, 2013Date of Patent: January 6, 2015Assignees: International Business Machines Corporation, STMicroelectronics S.A.Inventors: Erwan Dornel, Pascal R. Tannhof, Denis Rideau
-
Patent number: 8928052Abstract: An optoelectronic semiconductor chip has a semiconductor layer sequence having an active layer that generates radiation between a layer of a first conductivity type and a layer of a second conductivity type. The layer of the first conductivity type is adjacent to a front side of the semiconductor layer sequence. The semiconductor layer sequence contains at least one cutout extending from a rear side, lying opposite the front side, of the semiconductor layer sequence through the active layer to the layer of the first conductivity type. The layer of the first conductivity type is electrically connected through the cutout by means of a first electrical connection layer which covers the rear side of the semiconductor layer sequence at least in places.Type: GrantFiled: March 13, 2009Date of Patent: January 6, 2015Assignee: OSRAM Opto Semiconductors GmbHInventors: Karl Engl, Lutz Hoeppel, Patrick Rode, Matthias Sabathil
-
Patent number: 8928053Abstract: An input/output device includes a display circuit which changes its display state in accordance with a display data signal; a plurality of photodetector circuits which generate optical data in accordance with illuminance of light entering the photodetector circuits; wherein the photodetector circuits each include X (a natural number of 2 or more) photoelectric conversion elements; X charge accumulation control transistors in which one of a source and a drain is electrically connected to a second current terminal of one photoelectric conversion element of the X photoelectric conversion elements, and one charge accumulation control signal of X charge accumulation control signals from the photodetector circuit control section is input to the gate; and an amplifying transistor in which a gate is electrically connected to one of the source and the drain of each of the X charge accumulation control transistors.Type: GrantFiled: August 25, 2011Date of Patent: January 6, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Yoshiyuki Kurokawa
-
Patent number: 8928054Abstract: A touch substrate includes a base substrate, a sensing element and a switching element. The sensing element is disposed over the base substrate, senses infrared light, and includes a sensing semiconductor pattern. The switching element is electrically connected to the sensing element, includes a material substantially the same as a material of the sensing semiconductor pattern, and includes a switching semiconductor pattern having a thickness different from a thickness of the sensing semiconductor pattern.Type: GrantFiled: March 9, 2012Date of Patent: January 6, 2015Assignee: Samsung Display Co., Ltd.Inventors: Sang-Youn Han, Mi-Seon Seo, Sung-Hoon Yang
-
Patent number: 8928055Abstract: According to one embodiment, a magnetic memory element includes a stacked body and a conductive shield. The stacked body includes first and second stacked units. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first ferromagnetic layer has a fixed magnetization in a first direction. A magnetization direction of the second ferromagnetic layer is variable in a second direction. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit includes a third ferromagnetic layer stacked with the first stacked unit in a stacking direction of the first stacked unit. A magnetization direction of the third ferromagnetic layer is variable in a third direction. The conductive shield is opposed to at least a part of a side surface of the second stacked unit. An electric potential of the conductive shield is controllable.Type: GrantFiled: August 31, 2012Date of Patent: January 6, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Daisuke Saida, Minoru Amano, Junichi Ito
-
Patent number: 8928056Abstract: A memory device includes a MISFET on a semiconductor substrate of a first conductivity type, and a MIS capacitor on a first well of a second conductivity type. The MISFET includes a gate insulating film on the semiconductor substrate, a gate electrode, and a source/drain located at both sides of the gate electrode. The MIS capacitor includes a capacitor insulating film on the first well serving as a first electrode, a second electrode, and a first impurity layer of the first conductivity type. The gate electrode and the second electrode are electrically connected together, and form a floating gate. The gate insulating film and the capacitor insulating film are made of a same material, and have a same thickness. The gate electrode and the second electrode are made of a same conductive film. A second impurity layer is formed astride a border between the semiconductor substrate and the first well.Type: GrantFiled: July 19, 2012Date of Patent: January 6, 2015Assignee: Panasonic Intellectual Property Management Co., Ltd.Inventor: Ichirou Matsuo
-
Patent number: 8928057Abstract: A method including providing fins etched from a semiconductor substrate and covered by an oxide layer and a nitride layer, the oxide layer being located between the fins and the nitride layer, removing a portion of the fins to form an opening, forming a dielectric spacer on a sidewall of the opening, and filling the opening with a fill material, wherein a top surface of the fill material is substantially flush with a top surface of the nitride layer. The method may further include forming a deep trench capacitor in-line with one of the fins, removing the nitride layer to form a gap between the fins and the fill material, wherein the fill material has re-entrant geometry extending over the gap, and removing the re-entrant geometry and causing the gap between the fins and the fill material to widen.Type: GrantFiled: November 30, 2012Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: William Cote, Johnathan E. Faltermeier, Babar A. Khan, Ravikumar Ramachandran, Theodorus E. Standaert, Xinhui Wang
-
Patent number: 8928059Abstract: A nonvolatile memory device includes a substrate; a channel layer projecting from a surface of the substrate, in a direction perpendicular to the surface; a tunnel dielectric layer surrounding the channel layer; a plurality of interlayer dielectric layers and a plurality of control gate electrodes alternately formed along the channel layer; floating gate electrodes interposed between the tunnel dielectric layer and the plurality of control gate electrodes, the floating gate electrodes comprising a metal-semiconductor compound; and a charge blocking layer interposed between each of the plurality of control gate electrodes and each of the plurality of floating gate electrodes.Type: GrantFiled: September 6, 2012Date of Patent: January 6, 2015Assignee: SK Hynix Inc.Inventors: Sung-Jin Whang, Dong-Sun Sheen, Seung-Ho Pyi, Min-Soo Kim
-
Patent number: 8928060Abstract: Some embodiments of the present disclosure relates to an architecture to create split gate flash memory cell that has lower common source (CS) resistance and a reduced cell size by utilizing isolated source regions that are diffused only in the active regions between the stacked control gate structures. The architecture contains no CS under the isolation region, thus eliminating the effects of CS rounding and CS resistance, resulting in a reduced space between cells in an array. A metal layer is disposed along the semiconductor body above the common source regions to provide potential coupling during programming and erasing and thus electrically connect the common sources of memory cells along a direction that forms a CS line. Hence, this particular architecture reduces the resistance and the metal connection over several cells in an array suppresses the area over head.Type: GrantFiled: May 10, 2013Date of Patent: January 6, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yong-Shiuan Tsair, Wen-Ting Chu, Po-Wei Liu, Wen-Tuo Huang
-
Patent number: 8928061Abstract: A monolithic three dimensional NAND string includes a semiconductor channel located over a substrate, a plurality of control gates extending substantially parallel to the major surface of the substrate including a first control gate located in a first device level and a second control gate located in a second device level located over the substrate and below the first device level, a charge storage material including a silicide layer located in the first device level and in the second device level, a blocking dielectric located between the charge storage material and the plurality of control gates, and a tunnel dielectric located between the charge storage material and the semiconductor channel. The tunnel dielectric has a straight sidewall, portions of the blocking dielectric have a clam shape, and each of the plurality of control gates is located at least partially in an opening in the clam-shaped portion of the blocking dielectric.Type: GrantFiled: February 26, 2014Date of Patent: January 6, 2015Assignee: SanDisk Technologies, Inc.Inventors: Henry Chien, Johann Alsmeier, George Samachisa, Henry Chin, George Matamis, Yuan Zhang, James Kai, Vinod Purayath, Donovan Lee
-
Patent number: 8928062Abstract: A nonvolatile semiconductor memory device includes a plurality of nonvolatile memory cells formed on a semiconductor substrate, each memory cell including source and drain regions separately formed on a surface portion of the substrate, buried insulating films formed in portions of the substrate that lie under the source and drain regions and each having a dielectric constant smaller than that of the substrate, a tunnel insulating film formed on a channel region formed between the source and drain regions, a charge storage layer formed of a dielectric body on the tunnel insulating film, a block insulating film formed on the charge storage layer, and a control gate electrode formed on the block insulating film.Type: GrantFiled: March 23, 2009Date of Patent: January 6, 2015Assignee: Kabushiki Kaisha ToshibaInventor: Naoki Yasuda
-
Patent number: 8928063Abstract: A non-volatile memory device includes a channel layer vertically extending from a substrate, a plurality of inter-layer dielectric layers and a plurality of gate electrodes that are alternately stacked along the channel layer, and an air gap interposed between the channel layer and each of the plurality of gate electrodes. The non-volatile memory device may improve erase operation characteristics by suppressing back tunneling of electrons by substituting a charge blocking layer interposed between a gate electrode and a charge storage layer with an air gap, and a method for fabricating the non-volatile memory device.Type: GrantFiled: September 14, 2012Date of Patent: January 6, 2015Assignee: SK Hynix Inc.Inventors: Min-Soo Kim, Dong-Sun Sheen, Seung-Ho Pyi, Sung-Jin Whang
-
Patent number: 8928064Abstract: A method of forming a gate structure for a semiconductor device that includes forming a non-stoichiometric high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the non-stoichiometric high-k gate dielectric layer and the semiconductor substrate. At least one gate conductor layer may be formed on the non-stoichiometric high-k gate dielectric layer. The at least one gate conductor layer comprises a boron semiconductor alloy layer. An anneal process is applied, wherein during the anneal process the non-stoichiometric high-k gate dielectric layer removes oxide material from the oxide containing interfacial layer. The oxide containing interfacial layer is thinned by removing the oxide material during the anneal process.Type: GrantFiled: September 18, 2013Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Martin M. Frank, Isaac Lauer, Jeffrey W. Sleight
-
Patent number: 8928065Abstract: A termination structure for a power transistor includes a semiconductor substrate having an active region and a termination region. The substrate has a first type of conductivity. A termination trench is located in the termination region and extends from a boundary of the active region to within a certain distance of an edge of the semiconductor substrate. A doped region has a second type of conductivity disposed in the substrate below the termination trench. A MOS gate is formed on a sidewall adjacent the boundary. The doped region extends from below a portion of the MOS gate spaced apart from the boundary toward a remote sidewall of the termination trench. A termination structure oxide layer is formed on the termination trench and covers a portion of the MOS gate and extends toward the edge of the substrate. A first conductive layer is formed on a backside surface of the semiconductor substrate.Type: GrantFiled: October 21, 2010Date of Patent: January 6, 2015Assignee: Vishay General Semiconductor LLCInventors: Chih-Wei Hsu, Florin Udrea, Yih-Yin Lin
-
Patent number: 8928066Abstract: An integrated circuit may include a semiconductor portion with a power transistor including first gate trenches that cross a first region and a sense transistor including second gate trenches that cross a second region. Each gate trench extends in a longitudinal direction and comprises a gate electrode and a field electrode. The first and second regions are arranged along the longitudinal direction. A first termination trench intersects at least the second gate trenches in a third region between the first and second regions. The first termination trench includes a first conductive structure that is electrically connected to the field electrodes in the second gate trenches. The characteristics of the sense transistor formed in the second region reliably and precisely replicate the characteristics of the power transistor.Type: GrantFiled: February 4, 2013Date of Patent: January 6, 2015Assignee: Infineon Technologies Austria AGInventors: Britta Wutte, Martin Poelzl
-
Patent number: 8928067Abstract: A computer program storage product includes instructions for forming a fin field-effect-transistor. The instructions are configured to perform a method. The method includes implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.Type: GrantFiled: October 15, 2013Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
-
Patent number: 8928068Abstract: A vertical semiconductor device (e.g. a vertical power device, an IGBT device, a vertical bipolar transistor, a UMOS device or a GTO thyristor) is formed with an active semiconductor region, within which a plurality of semiconductor structures have been fabricated to form an active device, and below which at least a portion of a substrate material has been removed to isolate the active device, to expose at least one of the semiconductor structures for bottom side electrical connection and to enhance thermal dissipation. At least one of the semiconductor structures is preferably contacted by an electrode at the bottom side of the active semiconductor region.Type: GrantFiled: April 4, 2013Date of Patent: January 6, 2015Assignee: Silanna Semiconductor U.S.A., Inc.Inventors: Stuart B. Molin, Michael A. Stuber
-
Patent number: 8928069Abstract: The generation of a variation in properties of vertical transistors is restrained. A vertical MOS transistor is formed in a semiconductor substrate. A first interlayer dielectric film and a first source wiring are formed over the front surface of the substrate. The first source wiring is formed over the first interlayer dielectric film, and is overlapped with the vertical MOS transistor as viewed in plan. Contacts are buried in the first interlayer dielectric film. Through the contacts, an n-type source layer of vertical MOS transistor is coupled with the first source wiring. Openings are made in the first source wiring.Type: GrantFiled: May 14, 2012Date of Patent: January 6, 2015Assignee: Renesas Electronics CorporationInventors: Yuki Fukui, Hiroaki Katou
-
Patent number: 8928070Abstract: The present invention provides a manufacturing method of a trench type power transistor device with a super junction. First, a substrate of a first conductivity type is provided, and then an epitaxial layer of a second conductive type is formed on the substrate. Next, a through hole is formed in the epitaxial layer, and the through hole penetrates through the epitaxial layer. Two doped drain regions of the first conductivity type are then formed in the epitaxial layer respectively at two sides of the through hole, and the doped drain regions extend from a top surface of the epitaxial layer to be in contact with the substrate.Type: GrantFiled: July 23, 2012Date of Patent: January 6, 2015Assignee: Anpec Electronics CorporationInventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Chia-Hao Chang
-
Patent number: 8928071Abstract: A semiconductor device has a semiconductor substrate with a plurality of transistor cell regions. Each transistor cell region includes a plurality of trenches disposed in the semiconductor substrate, a well region between the plurality of trenches, and a source region of a MOSFET in the well region. A source electrode of the MOSFET is in contact with a top surface of the source region in each of the plurality of transistor cell regions. The source electrode is in contact with a part of a main surface of the semiconductor substrate so as to form a Schottky junction in a Schottky cell region disposed between the plurality of transistor cell regions. The Schottky junction is lower than a portion of the main surface between the Schottky junction and one of the transistor cell regions.Type: GrantFiled: March 16, 2013Date of Patent: January 6, 2015Assignee: Renesas Electronics CorporationInventors: Nobuyuki Shirai, Nobuyoshi Matsuura, Yoshito Nakazawa
-
Patent number: 8928072Abstract: Provided is a semiconductor device that can be manufactured at low cost and that can reduce a reverse leak current, and a manufacturing method thereof. A semiconductor device has: a source region and a drain region having a body region therebetween; a source trench that reaches the body region, penetrating the source region; a body contact region formed at the bottom of the source trench; a source electrode embedded in the source trench; and a gate electrode that faces the body region. The semiconductor device also has: an n-type region for a diode; a diode trench formed reaching the n-type region for a diode; a p+ region for a diode that forms a pn junction with the n-type region for a diode at the bottom of the diode trench; and a schottky electrode that forms a schottky junction with the n-type region for a diode at side walls of the diode trench.Type: GrantFiled: May 3, 2013Date of Patent: January 6, 2015Assignee: Rohm Co., Ltd.Inventor: Kenichi Yoshimochi
-
Patent number: 8928073Abstract: A semiconductor device includes a substrate partitioned into a cell region, a peripheral circuit region, and an interface region between the cell region and the peripheral circuit region. A guard ring is provided in the interface region of the substrate and surrounds the cell region. A first gate structure is in the cell region, and a second gate structure is in the peripheral circuit region.Type: GrantFiled: March 6, 2013Date of Patent: January 6, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Se-myeong Jang, Sang-hyun Han, Hyo-dong Ban
-
Patent number: 8928074Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices have graded p-type semiconductor layers and/or regions formed by epitaxial growth. The methods do not require ion implantation. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.Type: GrantFiled: March 30, 2012Date of Patent: January 6, 2015Assignee: Power Integrations, Inc.Inventors: Lin Cheng, Michael Mazzola
-
Patent number: 8928075Abstract: A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region parallel to channel current flow. The RESURF trenches have dielectric liners and electrically conductive RESURF elements on the liners. Source contact metal is disposed over the body region and source regions. A semiconductor device containing a high voltage MOS transistor with a drain drift region over a lower drain layer, and channel regions laterally disposed at the top surface of the substrate. RESURF trenches cut through the drain drift region and body region perpendicular to channel current flow. Source contact metal is disposed in a source contact trench and extended over the drain drift region to provide a field plate.Type: GrantFiled: August 1, 2012Date of Patent: January 6, 2015Assignee: Texas Instruments IncorporatedInventors: Christopher Boguslaw Kocon, Marie Denison, Taylor Efland
-
Patent number: 8928077Abstract: In one general aspect, a power device includes an active region having a plurality of pillars of a first conductivity type alternately arranged with a plurality of pillars of a second conductivity type where the plurality of pillars of the second conductivity type in the active region each have substantially the same width. The power device includes a termination region surrounding at least a portion of the active region and having a plurality of pillars of the first conductivity type alternately arranged with a plurality of pillars of the second conductivity type where the plurality of pillars of the second conductivity type in the active region each have substantially the same width and are smaller than each width of the pillars of the second conductivity type in the termination region. The power device includes a transition region disposed between the active region and the termination region.Type: GrantFiled: September 19, 2008Date of Patent: January 6, 2015Assignee: Fairchild Semiconductor CorporationInventors: JaeGil Lee, Chongman Yun, Hocheol Jang, Christopher L. Rexer, Praveen Muraleedharan Shenoy, Dwayne S. Reichl, Joseph A. Yedinak
-
Patent number: 8928078Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes: a first conductive type substrate, a second conductive type high voltage well, a gate, a first conductive type body region, a second conductive type source, a second conductive type drain, a first conductive type body electrode, and a first conductive type floating region. The floating region is formed in the body region, which is electrically floating and is electrically isolated from the source and the gate, such that the electrostatic discharge (ESD) effect is mitigated.Type: GrantFiled: December 25, 2012Date of Patent: January 6, 2015Assignee: Richtek Technology Corporation, R.O.C.Inventors: Tzu-Cheng Kao, Jian-Hsing Lee, Jin-Lian Su, Huan-Ping Chu, Hung-Der Su
-
Patent number: 8928079Abstract: A semiconductor device is formed on a semiconductor substrate. The device includes: a drain; an epitaxial layer overlaying the drain, wherein a drain region extends into the epitaxial layer; and an active region. The active region includes: a body disposed in the epitaxial layer, having a body top surface; a source embedded in the body, extending from the body top surface into the body; a gate trench extending into the epitaxial layer; a gate disposed in the gate trench; an active region contact trench extending through the source and into the body; and an active region contact electrode disposed within the active region contact trench. A layer of body region separates the active region contact electrode from the epitaxial layer, and a low injection diode is formed below a body/drain junction.Type: GrantFiled: September 11, 2012Date of Patent: January 6, 2015Assignee: Alpha and Omega Semiconductor LimitedInventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
-
Patent number: 8928080Abstract: A back-bias region is disposed on a substrate. A buried insulating layer covers the substrate and the back-bias region. A body is formed on the buried insulating layer and partially overlaps the back-bias region. A drain is in contact with the body. A gate electrode covers top and lateral surfaces of the body.Type: GrantFiled: July 20, 2012Date of Patent: January 6, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Min-Chul Sun, Byung-Gook Park
-
Patent number: 8928081Abstract: A semiconductor integrated circuit having a high withstand voltage TFT and a TFT which is capable of operating at high speed in a circuit of thin film transistors (TFT) and methods for fabricating such circuit will be provided. A gate insulating film of the TFT required to operate at high speed (e.g., TFT used for a logic circuit) is relatively thinned less than a gate insulating film of the TFT which is required to have high withstand voltage (e.g., TFT used for switching high voltage signals).Type: GrantFiled: March 21, 2013Date of Patent: January 6, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Hisashi Ohtani
-
Patent number: 8928082Abstract: A method for fabricating a junction-less transistor device that includes a substrate, a buried dielectric layer having a fin structure on the substrate, a doped region formed through the buried dielectric layer in the substrate, a semiconductor layer overlying the buried dielectric layer and the doped region, a gate structure on the semiconductor layer, and source/drain regions in the semiconductor layer at opposite sides of the gate structure. The semiconductor layer includes first, second, third regions, with the second region interposed between the first and second regions and disposed underneath the gate electrode structure. The first, second, and third regions have a same doping polarity. The second region has a doping concentration less than those of the first and second regions. The second region and the doped region have opposite doping polarities. The second region has a groove in contact with a bottom portion of the gate structure.Type: GrantFiled: June 19, 2013Date of Patent: January 6, 2015Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventor: Jinhua Liu
-
Patent number: 8928083Abstract: A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. An oxide layer is formed over the SOI layer. At least one first set and at least one second set of fins are patterned in the SOI layer and the oxide layer. A conformal gate dielectric layer is selectively formed on a portion of each of the first set of fins that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer over the portion of each of the first set of fins that serves as the channel region of the transistor device. A second metal gate stack is formed on a portion of each of the second set of fins that serves as a channel region of a diode device.Type: GrantFiled: August 15, 2013Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
-
Patent number: 8928084Abstract: An ESD protection device, which is arranged to be active at a triggering voltage (Vt1) for providing ESD protection, comprises a first region of the first conductivity type formed in a semiconductor layer of the first conductivity type, the first region extending from a surface of the semiconductor layer and being coupled to a first current electrode (C) of the semiconductor device, a well region of a second conductivity type formed in the semiconductor layer extending from the surface of the semiconductor layer, and a second region of the second conductivity type formed in the well region, the second region being coupled to a second current electrode (B). The ESD protection device further comprises a floating region of the second conductivity type formed in the semiconductor layer between the first current electrode (C) and the well region and extending from the surface of the semiconductor layer a predetermined depth.Type: GrantFiled: May 4, 2007Date of Patent: January 6, 2015Assignees: Freescale Semiconductor, Inc., Le Centre National de la Recherché Scientifique (CNRS)Inventors: Philippe Renaud, Patrice Besse, Amaury Gendron, Nicolas Nolhier
-
Patent number: 8928085Abstract: Apparatus and methods for electronic circuit protection are disclosed. In one embodiment, an apparatus comprises a well having an emitter and a collector region. The well has a doping of a first type, and the emitter and collector regions have a doping of a second type. The emitter region, well, and collector region are configured to operate as an emitter, base, and collector for a first transistor, respectively. The collector region is spaced away from the emitter region to define a spacing. A first spacer and a second spacer are positioned adjacent the well between the emitter and the collector. A conductive plate is positioned adjacent the well and between the first spacer and the second spacer, and a doping adjacent the first spacer, the second spacer, and the plate consists essentially of the first type.Type: GrantFiled: March 28, 2013Date of Patent: January 6, 2015Assignee: Analog Devices, Inc.Inventors: Javier Alejandro Salcedo, David Casey, Graham McCorkell
-
Patent number: 8928086Abstract: A fin structure includes an optional doped well, a disposable single crystalline semiconductor material portion, and a top semiconductor portion formed on a substrate. A disposable gate structure straddling the fin structure is formed, and end portions of the fin structure are removed to form end cavities. Doped semiconductor material portions are formed on sides of a stack of the disposable single crystalline semiconductor material portion and a channel region including the top semiconductor portion. The disposable single crystalline semiconductor material portion may be replaced with a dielectric material portion after removal of the disposable gate structure or after formation of the stack. The gate cavity is filled with a gate dielectric and a gate electrode. The channel region is stressed by the doped semiconductor material portions, and is electrically isolated from the substrate by the dielectric material portion.Type: GrantFiled: January 9, 2013Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Henry K. Utomo, Kangguo Cheng, Ramachandra Divakaruni, Dechao Guo, Myung-Hee Na, Ravikumar Ramachandran, Kern Rim, Huiling Shang
-
Patent number: 8928087Abstract: A semiconductor device is equipped with an element region, an electrode, a thermal conduction portion, and a protective membrane. The element region is equipped with a plurality of gate electrodes. The electrode is formed on a surface of the element region. The thermal conduction portion is located on a surface side of a central portion of the electrode, and is higher in thermal conductivity than the element region. The protective membrane is formed on a peripheral portion that is located on the surface side of the electrode and surrounds a periphery of the central portion. In the element region, an emitter central region that is formed on a back side of the central portion of the electrode remains on for a longer time than an emitter peripheral region that is formed on a back side of the peripheral portion of the electrode.Type: GrantFiled: November 28, 2012Date of Patent: January 6, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventor: Tadashi Misumi
-
Patent number: 8928088Abstract: A method of forming an integrated circuit comprises forming at least one gate electrode of at least one active transistor, and at least one first dummy gate electrode. The method also comprises forming a first doped region disposed in the substrate and adjacent to a first side wall of the at least one first dummy gate electrode, wherein the first doped region has a first conductivity type dopant. The method further comprises forming a second doped region disposed in the substrate and adjacent to a second side wall of the at least one first dummy gate electrode. The second doped region has a second conductivity type dopant that is opposite to the first conductivity type dopant.Type: GrantFiled: April 4, 2014Date of Patent: January 6, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mei-Hui Huang, Chan-Hong Chern
-
Patent number: 8928089Abstract: A semiconductor structure and a method for forming the same are provided. The structure comprises a semiconductor substrate (100) with an nMOSFET region (102) and a pMOSFET region (104) on it. An nMOSFET structure and a pMOSFET structure are formed in the nMOSFET region (102) and the pMOSFET region (104), respectively. The nMOSFET structure comprises a first channel region (182) formed in the nMOSFET region (102) and a first gate stack formed in the first channel region (182). The nMOSFET structure is covered with a compressive-stressed material layer (130) to apply a tensile stress to the first channel region (182). The pMOSFET structure comprises a second channel region (184) formed in the pMOSFET region (104) and a second gate stack formed in the second channel region (184). The pMOSFET structure is covered with a tensile-stressed material layer (140) to apply a compressive stress to the second channel region (184).Type: GrantFiled: February 24, 2011Date of Patent: January 6, 2015Assignee: Institute of Microelectronics Chinese Academy of SciencesInventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
-
Patent number: 8928090Abstract: A metallic top surface of a replacement gate structure is oxidized to convert a top portion of the replacement gate structure into a dielectric oxide. After removal of a planarization dielectric layer, selective epitaxy is performed to form a raised source region and a raised drain region that extends higher than the topmost surface of the replacement gate structure. A gate level dielectric layer including a first dielectric material is deposited and subsequently planarized employing the raised source and drain regions as stopping structures. A contact level dielectric layer including a second dielectric material is formed over the gate level dielectric layer, and contact via holes are formed employing an etch chemistry that etches the second dielectric material selective to the first dielectric material. Raised source and drain regions are recessed. Self-aligned contact structures can be formed by filling the contact via holes with a conductive material.Type: GrantFiled: October 31, 2012Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Soon-Cheon Seo, Balasubramanian S. Haran, Alexander Reznicek
-
Patent number: 8928091Abstract: Embodiments of the present invention provide an array of fin-type transistors formed on top of an oxide layer. At least a first and a second of the fin-type transistors have their respective source and drain contacts being formed inside the oxide layer, with one of the contacts of the first fin-type transistor being conductively connected to one of the contacts of the second fin-type transistor by an epitaxial silicon layer, wherein the epitaxial silicon layer is formed on top of a first and a second fin of the first and second fin-type transistors respectively.Type: GrantFiled: December 4, 2013Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Charles W. Koburger, III, Douglas C. LaTulipe, Jr.
-
Patent number: 8928092Abstract: A semiconductor device includes a lower insulating pattern on a semiconductor substrate, a lower gate pattern on the lower insulating pattern and formed of a doped polysilicon layer, a residual insulating pattern with an opening exposing a portion of a top surface of the lower gate pattern, an upper gate pattern on the residual insulating pattern, the upper gate pattern filling the opening, and a diffusion barrier pattern in contact with the portion of the top surface of the lower gate pattern and extending between the residual insulating pattern and the upper gate pattern.Type: GrantFiled: July 12, 2013Date of Patent: January 6, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Hauk Han, Yong-Il Kwon, JungSuk Oh, Tae sun Ryu, Jeonggil Lee
-
Patent number: 8928093Abstract: A semiconductor device may include body contacts on a finFET device for ESD protection. The semiconductor device comprises a semiconductor fin, a source/drain region and a body contact. The source/drain region and the body contact are in the semiconductor fin. A portion of the fin is laterally between the source/drain region and the body contact. The semiconductor fin is on a substrate.Type: GrantFiled: March 10, 2014Date of Patent: January 6, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ching-Hsiung Lo, Jam-Wem Lee, Wun-Jie Lin, Jen-Chou Tseng
-
Patent number: 8928094Abstract: The present disclosure provides a semiconductor device and methods of making wherein the semiconductor device has strained asymmetric source and drain regions. A method of fabricating the semiconductor device includes providing a substrate and forming a poly gate stack on the substrate. A dopant is implanted in the substrate at an implant angle ranging from about 10° to about 25° from perpendicular to the substrate. A spacer is formed adjacent the poly gate stack on the substrate. A source region and a drain region are etched in the substrate. A strained source layer and a strained drain layer are respectively deposited into the etched source and drain regions in the substrate, such that the source region and the drain region are asymmetric with respect to the poly gate stack. The poly gate stack is removed from the substrate and a high-k metal gate is formed using a gate-last process where the poly gate stack was removed.Type: GrantFiled: September 3, 2010Date of Patent: January 6, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Fai Cheng, Ka-Hing Fung, Shyh-Wei Wang, Chin-Te Su
-
Patent number: 8928095Abstract: A semiconductor device having a well, a p well implant bounded at least in part within a substrate by the well, a conductive layer disposed on the substrate, a high voltage n? (HVN?) doped well implanted in the p well implant, a high voltage p doped (HVPD) well implanted in the p well implant, and a drain n? well and a source n? well disposed in the HVN? doped well and HVPD well, respectively, is provided. A method of fabricating the semiconductor device is also provided. In certain embodiments, the method of fabricating the semiconductor device is characterized by implanting the HVN? ions at a first tilt angle and/or implanting the HVPD ions at a second tilt angle.Type: GrantFiled: August 16, 2013Date of Patent: January 6, 2015Assignee: Macronix International Co., Ltd.Inventors: Chien-Chung Chen, Ming-Tung Lee, Yin-Fu Huang, Shih-Chin Lien, Shyi-Yuan Wu
-
Patent number: 8928096Abstract: A buried-channel field-effect transistor includes a semiconductor layer formed on a substrate. The semiconductor layer includes doped source and drain regions and an undoped channel region. the transistor further includes a gate dielectric formed over the channel region and partially overlapping the source and drain regions; a gate formed over the gate dielectric; and a doped shielding layer between the gate dielectric and the semiconductor layer.Type: GrantFiled: May 18, 2012Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Tak H. Ning
-
Patent number: 8928097Abstract: A device having an integrated noise shield is disclosed. The device includes a plurality of vertical shielding structures substantially surrounding a semiconductor device. The device further includes an opening above the semiconductor device substantially filled with a conductive fluid, wherein the plurality of vertical shielding structures and the conductive fluid shield the semiconductor device from ambient radiation. In some embodiments, the device further includes a conductive bottom shield below the semiconductor device shielding the semiconductor device from ambient radiation. In some embodiments, the opening is configured to allow a biological sample to be introduced into the semiconductor device. In some embodiments, the vertical shielding structures comprise a plurality of vias, wherein each of the plurality of vias connects more than one conductive layers together.Type: GrantFiled: August 21, 2013Date of Patent: January 6, 2015Assignee: Genia Technologies, Inc.Inventor: Roger J. A. Chen
-
Patent number: 8928098Abstract: A semiconductor package includes: a chip having a first portion and a second portion disposed on the first portion, wherein the second portion has at least a through hole therein for exposing a portion of the first portion, and the first portion and/or the second portion has a MEMS; and an etch stop layer formed between the first portion and the second portion and partially exposed through the through hole of the second portion. The invention allows an electronic element to be received in the through hole so as for the semiconductor package to have integrated functions of the MEMS and the electronic element. Therefore, the need to dispose the electronic element on a circuit board as in the prior art can be eliminated, thereby saving space on the circuit board.Type: GrantFiled: December 13, 2012Date of Patent: January 6, 2015Assignee: Xintec, Inc.Inventors: Hung-Jen Lee, Shu-Ming Chang, Tsang-Yu Liu, Yen-Shih Ho
-
Patent number: 8928099Abstract: A method for manufacturing a micromechanical component is described in which a trench etching process and a sacrificial layer etching process are carried out to form a mass situated movably on a substrate. The movable mass has electrically isolated and mechanically coupled subsections of a functional layer. A micromechanical component having a mass situated movably on a substrate is also described.Type: GrantFiled: February 1, 2013Date of Patent: January 6, 2015Assignee: Robert Bosch GmbHInventors: Johannes Classen, Jochen Reinmuth, Andreas Scheurle
-
Patent number: 8928100Abstract: Embodiments are directed to STT MRAM devices. One embodiment of an STT MRAM device includes a reference layer, a tunnel barrier layer, a free layer and one or more conductive vias. The reference layer is configured to have a fixed magnetic moment. In addition, the tunnel barrier layer is configured to enable electrons to tunnel between the reference layer and the free layer through the tunnel barrier layer. The free layer is disposed beneath the tunnel barrier layer and is configured to have an adaptable magnetic moment for the storage of data. The conductive via is disposed beneath the free layer and is connected to an electrode. Further, the conductive via has a width that is smaller than a width of the free layer such that a width of an active STT area for the storage of data in the free layer is defined by the width of the conductive via.Type: GrantFiled: June 24, 2011Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
-
Patent number: 8928101Abstract: A semiconductor device includes: a first semiconductor layer of a first conductivity type; an insulation layer on the first semiconductor layer; a second semiconductor layer in the insulation layer; an active element in the second semiconductor layer; a first semiconductor region on the first semiconductor layer and of a second conductivity type; a second semiconductor region in the first semiconductor region and of the second conductivity type with a higher impurity concentration than the first semiconductor region; a first conductor in a through hole in the insulation layer and connected to the second semiconductor region; a second conductor above or within the insulation layer, the second conductor surrounding the first conductor such that an outside edge thereof is outside the second semiconductor region; a third conductor connecting the first and second conductors; and a fourth conductor connected to the first semiconductor layer.Type: GrantFiled: October 5, 2011Date of Patent: January 6, 2015Assignees: LAPIS Semiconductor Co., Ltd., RIKENInventors: Hiroki Kasai, Yasuo Arai, Takaki Hatsui