Hollow, Foam, Cellular Or Porous Material Containing Patents (Class 106/605)
  • Patent number: 11717879
    Abstract: The present invention relates to the use of closed-pore microspheres of expanded perlite as a filler for producing moldings for the foundry industry, to a composition for producing moldings for the foundry industry, comprising closed-pore microspheres of expanded perlite as a filler, and a binder, the binder being selected from the group consisting of water glass, phenol-formaldehyde resins, two-component systems comprising as reactants a polyisocyanate and a polyol component containing free hydroxyl groups (OH groups), and starch, and also to moldings for the foundry industry and to a process for producing a molding for the foundry industry.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: August 8, 2023
    Assignee: HÜTTENES-ALBERTUS CHEMISCHE WERKE GESELLSCHAFT MIT BESCHRÄNKTER HAFTUNG
    Inventors: Sandra Lehmann, Klaus Riemann, Nils Zimmer, Hermann Lieber, Jürgen Hübert
  • Patent number: 10710481
    Abstract: A method of manufacturing a cover element for a motor vehicle comprises placing, in a mold, a stack formed at least of a covering material made of textile, of leather, of skin, or of a synthetic material, and of a foam layer at the rear surface of the covering material, the foam layer integrating reinforcing elements.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 14, 2020
    Assignee: FAURECIA SIEGES D'AUTOMOBILE
    Inventors: Fabrice Etienne, Julie Thomas, Didier Fouinat
  • Patent number: 10280770
    Abstract: In some examples, an article may include a substrate and a coating on the substrate. The substrate may include a superalloy, a ceramic, or a ceramic matrix composite. The coating may include a layer comprising a matrix material and a plurality of nanoparticles. The matrix material may include at least one of silica, zirconia, alumina, titania, or chromia, and the plurality of nanoparticles may include nanoparticles including at least one of yttria, zirconia, alumina, or chromia. In some examples, an average diameter of the nanoparticles is less than about 400 nm.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: May 7, 2019
    Assignees: Rolls-Royce Corporation, Purdue Research Foundation
    Inventors: Sungbo Shim, Sean E. Landwehr, Stephanie Gong, Jeffrey P. Youngblood, Rodney Trice
  • Patent number: 9440283
    Abstract: A process for hot shaping a workpiece of metal or an intermetallic compound at a temperature of higher than about 1000° C. The method comprises at least partially coating the surface of the workpiece with a coating agent that comprises an oxide phase and an additive and/or an adhesive before processing the workpiece into a formed body or a rolling product. A coating agent for reducing the heat emission from the workpiece comprises a predominant amount of an oxide phase. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 13, 2016
    Assignee: BOEHLER SCHMIEDETECHNIK GmbH & CO. KG
    Inventors: Karin Rockenschaub, Wilfried Marketz
  • Patent number: 9139475
    Abstract: A grout for filing a micro-trench formed in the ground includes comprises Class F fly ash in a range of approximately 0 to 30% by weight of grout and cement kiln dust in a range of approximately 50 to 90% by weight of grout.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: September 22, 2015
    Inventor: Jeffrey J. Konczak
  • Publication number: 20150128831
    Abstract: Microspheres comprising a plurality of hollow microspheres, each of the plurality of hollow microspheres comprising a plurality of glass walls, and a plurality of hollow spaces, wherein the plurality of glass walls enclosing at least one of the plurality of hollow spaces, wherein the plurality of glass walls comprising a second glass, wherein the second glass comprising a processed first glass melt, wherein the processed first glass melt comprising a melt of a batch and a plurality of redox active group components capable of providing at least one of a plurality of redox reactions and a plurality of events in the second glass.
    Type: Application
    Filed: January 17, 2015
    Publication date: May 14, 2015
    Inventors: Hamid Hojaji, Laura Gabriela Kocs
  • Patent number: 8915997
    Abstract: A concrete mix for producing freeze-thaw durable concrete having enhanced strength properties, like compressive strength, abrasion resistance, impact strength, toughness, is disclosed. The novel concrete mix contains deformable solid elements in place of 4-8% entrained air for good durability of concrete under freeze-thaw cycles.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: December 23, 2014
    Assignee: NAVS, LLC
    Inventor: Ashok H. Shah
  • Patent number: 8552111
    Abstract: A composition comprises a polyvinylchloride homopolymer, a biodegradable plasticizer and either a swelling agent or a carbohydrate coupled to the polyvinylchloride homopolymer or a combination thereof. The composition may further comprise a blowing agent. A coated fabric comprises a textile substrate and a biodegradable coating at least partially coating the textile substrate, wherein the biodegradable coating degrades at least 60% after 28 days under the ASTM D584 standard. A method of making a biodegradable coating comprises providing a polymer and blending a biodegradable plasticizer with the polymer to form a blend. A method of making a coated textile comprises providing a textile and a composition comprising a polymer, a biodegradable plasticizer, and at least one other component; applying the composition to the textile; and curing the composition, thereby making a coated textile.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: October 8, 2013
    Assignee: Kittrich Corporation
    Inventors: Robert F. Weber, Michael Zagryn
  • Patent number: 8414699
    Abstract: Low density additives and methods of making said additives for composite materials are provided. The low density additives have at least a partial or complete water repellant property that reduces moisture migration, absorption, and retention within a composite material in which it is incorporated into. Active sites are engineered onto the surface of the low density additives to enhance bonding of the additives within a composite matrix. Reduced water movement and enhanced bonding lead to an increased strength and durability performance for a composite material comprising such additives. Composite materials incorporating one or more engineered low density additives as also provided, such composite materials having enhanced strength and durability. Such composite materials may be made from a Hatschek process. The composite materials may be further used as interior and exterior building products.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: April 9, 2013
    Assignee: James Hardie Technology Limited
    Inventors: Hamid Hojaji, Caidian Luo, Liyan Ma
  • Patent number: 8021476
    Abstract: The invention relates to gypsum mortar with expanded vermiculite added with citric acid and tartaric acid and to the method for obtaining same, containing the following elements in the following proportions: between 40% and 70% calcium sulphate; between 40% and 70% laminated expanded vermiculite; between 0.05% and 0.3% citric acid; between 0.05% and 1% tartaric acid; between 0.01% and 0.5% sodium or potassium citrate; and water q.s.p. 1000 ml, in which, for surface coating, the added vermiculite is obtained following treatment in a vertical furnace, which provides improved grain size and sheets of exfoliated vermiculite without water or air, and the mortar is provided with citric acid and tartaric acid, copper sulphate and sodium or potassium scitrate, with the water being added before the mixture is produced.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 20, 2011
    Assignee: Fire Test, S.L.
    Inventors: Barbara Roman Aleman, Pilar Torres Zacarias
  • Patent number: 7744689
    Abstract: An alkali resistant glass composition having improved durability to withstand highly alkali environments at elevated temperatures, such as curing of cementitious products in an autoclave, is conveniently formed from economical and abundant materials. The glass composition includes increased levels of calcium and iron, and relatively low levels of alkali metals, as compared to many other alkali resistant glass products, and comprises essentially of, by weight, >35% Si2O3, 1-25% CaO, 1-15% Fe2O3, 1-10% R2O, and an amount of Al2O3 such that the ratio of Si2O3:Al2O3 is greater than or equal to 1. Alkali resistance can be improved by forming a passivity layer on the surface of glass articles by treating the articles hydrothermally in a basic environment. Optionally zirconia and/or titania may be added to the composition to further improve alkali resistance.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: June 29, 2010
    Assignee: James Hardie Technology Limited
    Inventors: Hamid Hojaji, David Leslie Melmeth
  • Publication number: 20100053974
    Abstract: In one aspect of embodiments of the invention is provided a heat-resistant cementitious composition comprising a binder comprising potassium silicate, and at least one filler material, the filler material substantially non-reactive with said potassium silicate; wherein the cementitious composition, in the presence of water, has a ramp flow value of less than about 10 in the substantial absence of vibration; and wherein the cementitious composition, in the presence of water, has both thixotropic flow properties and pseudoplastic flow properties. Also provided are lamp assemblies employing such cementitious compositions.
    Type: Application
    Filed: September 4, 2008
    Publication date: March 4, 2010
    Inventor: Vaughn C. STERLING
  • Patent number: 7547651
    Abstract: The invented compositions for metal cladding of components in demanding applications can include one or more of liquid and/or colloidal sodium, potassium and/or lithium silicate, clay and/or clays, a compound of hollow micro-spheres (e.g. naturally occurring and nearly ubiquitous perlite and/or a synthetic hollow micro-sphere equivalent) and/or alumina or one or more flexible or malleable or resiliently deformable, impact-resistant materials such as plastomers, elastomers and/or other plastic, rubber, plastic-like or rubber-like materials; a wetting agent consisting of one or more of water or water and ethanol for fast drying under proper safety and venting conditions; and one or more surfactants and/or dispersants.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 16, 2009
    Assignee: Applied Technology Laboratories LLC
    Inventor: Gary Wilson
  • Publication number: 20090126930
    Abstract: The invention provides a cement composition resistant to carbon dioxide including a hollow element for trapping carbonation products. The hollow element can be an additional component added to the cement composition, this component is made of hollow spherical or quasi spherical particles as cenospheres, sodium-calcium-borosilicate glass, silica-alumina microspheres, or a combination thereof. Or the hollow element is a spherical or quasi spherical void made in the set cement, for example by foaming the cement composition with a gas as air, nitrogen or a combination thereof. Use of such cement composition in carbon dioxide application is disclosed. Additionally, a method to cement a part of a borehole in presence with carbon dioxide is disclosed, a method to repair a part of a borehole in presence with carbon dioxide is disclosed using the above cement composition and a method to plug a part of a borehole in presence with carbon dioxide is disclosed.
    Type: Application
    Filed: September 25, 2006
    Publication date: May 21, 2009
    Inventors: Veronique Barlet-Gouedard, Simon James, Bruno Drochon, Bernard Piot, Caritey Jean-Philippe
  • Patent number: 7341620
    Abstract: A sound-absorbing and fire-insulating wall covering includes, a cured mixture of: (i) 5-20% by weight mineralized wood fibre; (ii) 20-60%/by weight sand with an SiO2 content of less than 5% by weight and a greywacke content of at least 30% by weight; and (iii) 20-50% by weight cement. A method of preparing a fire-insulating wall covering includes a step of mixing, relative to the cured weight, 5-20% by weight mineralized wood fibre, 30-60% by weight sand with an SiO2 content smaller than 5% by weight and a greywacke content of at least 30% by weight, and 20-50% by weight cement. Then 10-30% by weight water is added. Thereafter the mixture is cured to form the fire-insulating wall covering.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: March 11, 2008
    Assignee: Durisol International Corp.
    Inventors: Reinhard Walter, Arend Johan Veldhoen
  • Patent number: 6818055
    Abstract: A porous silicate granular material, especially as aggregate for the production of construction materials such as lightweight concrete, mortar or heat-insulating plaster containing glass and a glassy crystalline component comprising 45 to 85 wt. % SiO2, 5 to 20 wt. % alkali oxide, 5 to 30 wt. % alkaline earth oxide and 2 to 30 wt. % of other oxides such as Al2 O3 and/or Fe2O3. The glassy crystalline component accounts for 5 to 75 wt. % of the granular material. The glassy crystalline component of the granular material is a sinter reaction product. There is also a method of producing such a granular material in which the mixture is agglomerated at a temperature of 20° C. to 150° C. at normal pressure with the water vapour partial pressure being adjusted, selected or controlled as a function of time-temperature and carbon dioxide being excluded or admitted, whereby the admission of carbon dioxide is controlled by adjusting or selecting the carbon dioxide partial pressure.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: November 16, 2004
    Assignee: Mattig & Lindner GmbH
    Inventor: Siegfried Schelinski
  • Patent number: 6783704
    Abstract: Process for the production of hydrophobic layers on optical substrates which have an alkaline earth metal fluoride or alkali metal fluoride layer as the outermost layer or consist of alkaline earth metal fluorides or alkali metal fluorides, by thermal vapor deposition with polyfluorohydrocarbons in a high vacuum.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 31, 2004
    Assignee: Merck Patent GmbH
    Inventors: Uwe Anthes, Reiner Dombrowski, Martin Friz
  • Publication number: 20040163571
    Abstract: A fire resistant wood door is formed from an opposing pair of rails interconnected by a upper and lower stiles forming an outer frame. A wood laminate core is provided within the outer frame and covered by outer sheathing. The wood laminate core is formed from first and second panels and a heat barrier layer. Each of the first and second panels is formed from an organic material and provided with a plurality of grooves on one surface. The heat barrier layer is in the form of a casting applied to the grooved surface of at least one, and preferably both, of the first and second panels. The panels are then joined together with the heat barrier layer sandwiched therebetween. When joined with the outer frame and sheathing, a wood door is formed having a fire rating of at least 45 minutes.
    Type: Application
    Filed: October 20, 2003
    Publication date: August 26, 2004
    Applicant: DORSET FIREDOOR SYSTEMS, INC.
    Inventor: Andre Fortin
  • Publication number: 20040011255
    Abstract: A ceramic material, includes SiO2 and Na2O and/or K2O. The material is characterized by a porosity of over 60% and by pores, more than 70% of which have a pore size ranging between 0.1 and 15 &mgr;m. The ceramic material can be used as filtering material, for water storage and as adsorbent material.
    Type: Application
    Filed: November 25, 2002
    Publication date: January 22, 2004
    Inventor: Antonio Giangrasso
  • Patent number: 6554893
    Abstract: The present invention describes an improved building material composition, useful for example as a fire door core and to improved methods of making this composition. The building material of the present invention consists essentially of expanded perlite, a fireproof binder, clay or vermiculite, and optionally diatomaceous earth, one or more viscosity-enhancing components, reinforcement fibers, and a plasticizer or mixtures thereof. The method of making this improved composition is a semi-continuous batch press method wherein at least the expanded perlite, fireproof binder, and clay or vermiculite are mixed; the mixture compressed in a mold, and the compressed mixture dried.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: April 29, 2003
    Assignee: Georgia-Pacific Corporation
    Inventor: Donald F. Klus
  • Patent number: 6541108
    Abstract: The process of the invention characterized in that to 100 parts by weight of a silicate powder having 2000-8000 m2/g specific surface, 1-10 parts by weight of gas-forming material with particle size of 10-100 &mgr;m and 0.5-15 parts by weight of montmorillonite, 0.5-2 parts by weight of alkali hydrogen phosphate or alkali dihydrogen phosphate or a mixture of alkali metal phosphate and sodium silicate in form of aqueous solution, 0.01-5 parts by weight of rare earth metal oxide or a mixture of such oxides were added, then the mixture obtained is homogenized, pre-dried, coated with 1-5 parts by weight of titanium oxide and/or titanium oxide hydroxide and/or aluminum oxide hydroxide, then subjected to heat treatment at 720-1000° C., and the mixture obtained is molded. The subject of the invention: also the product of the above process.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: April 1, 2003
    Inventors: László Hoffmann, István {haeck over (J)}alsowszky, Emma Hoffmann, Rita Rostás, Jenó Fehér, Zsolt Fejér
  • Patent number: 6409817
    Abstract: Disclosed is a rigid fine-celled light-weight foam composition and a method of producing it which has improved retention of liquids by absorption/adsorption which improves the thermal insulation and fire retardant properties of the fine-celled foam particularly suited for use in double walled tanks and hollow canopies, building panels, profiles, and the like.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: June 25, 2002
    Assignee: Agritec, Inc.
    Inventor: Douglas K. Stephens
  • Patent number: 6355098
    Abstract: The present light-weight material contains expanded perlite, alkali silicates and optionally added hardeners for aqueous alkali silicates, wherein said expanded perlite has a grain of from 0.8 to 6 mm, a hydrophobizing agent is present, the bulk densities are in the range of from 60 to 500 kg/m3.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: March 12, 2002
    Assignee: Marmorit GmbH
    Inventor: Alfred Pfemeter
  • Patent number: 6340389
    Abstract: The present invention describes improved fire door cores and improved methods of making these fire door cores. The fire door core of the present invention comprises expanded perlite, a fireproof binder, fire clay or vermiculite, and optionally one or more viscosity-enhancing components, fiberglass, or both. The method of making this improved fire door core is a semi-continuous batch press method wherein the expanded perlite, an fireproof binder, fire clay or vermiculite are mixed; the mixture compressed in a mold, and the compressed mixture dried.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: January 22, 2002
    Assignee: G-P Gypsum Corporation
    Inventor: Donald F. Klus
  • Patent number: 6074475
    Abstract: A low-density, syntactic foam material is provided according to the invention. The syntactic foam material is prepared by mixing together a plurality of microballoons and a finely divided solid thermosetting resin. Fibers are also preferably incorporated into the material during processing to impart specific properties. The mixture is heated to allow the thermosetting resin to flow and wet the microballoons in the mixture. The mixture is then cured to set and crosslink the thermosetting resin to form the syntactic foam of the invention. The syntactic foam material has highly uniform properties and can be used in aerospace applications.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: June 13, 2000
    Assignee: McDonnell Douglas Corporation
    Inventors: Edward S. Harrison, Donald J. Bridges, James L. Melquist
  • Patent number: 6068795
    Abstract: A fire resistant, acoustic and thermally insulative product consists essentially of a silica-containing refractory solid in finely divided or powdered particulate form, present in an amount sufficient to intumesce to a predetermined volume when exposed to a predetermined amount of heat. The product further consists essentially of an aqueous sodium silicate solution present in an amount sufficient to act as an agent in producing a foaming process whereby the finely divided solid is so bonded as to form a cellular structure. The product produces substantially no toxic fumes or gases upon exposure to excessive heat or fire.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: May 30, 2000
    Inventor: Hilal Semhere
  • Patent number: 6059036
    Abstract: The present invention provides methods and compositions for sealing subterranean zones. The methods of the invention basically comprise the steps of preparing a sealing composition comprised of an aqueous alkali metal silicate solution, a gelling agent and a delayed acid activator for causing the composition to set into a rigid mass, placing the sealing composition in said subterranean zone and allowing the sealing composition to set into a rigid sealing mass therein.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: May 9, 2000
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jiten Chatterji, Lewis R. Norman, David D. Onan, Bobby J. King, Roger S. Cromwell
  • Patent number: 6033591
    Abstract: A thermal insulating material with a cellular structure is disclosed which comprises a bound SiO.sub.2 -containing material converted to at least 90% into a tobermorite phase. The SiO.sub.2 -containing material is diatomaceous earth, the density of the thermal insulating material is less than 150 kg/m.sup.3 and the thermal conductivity (declared value)is less than 0.05 (W/m.sup..multidot. K).
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: March 7, 2000
    Assignee: E. Schwenk Dammtechnik GmbH & Co.
    Inventor: Bassilios Zlatanof
  • Patent number: 5944888
    Abstract: The present invention is directed to an insulating coating for refractory articles, adapted to be applied by spraying or gunning, which is easy to apply, cost effective, eliminates the potential health hazards associated with ceramic fiber paper, and which imparts sufficient insulating properties to the refractory article in high temperature environments. More particularly, the present invention is directed to an insulating coating and a method of preparing the insulating coating wherein the coating composition is comprised of about 25% to about 75% by weight of lightweight aggregate, up to about 25% to about 75% by weight of binder, up to 0.5% by weight of organic fiber, up to about 15% by weight of an additive to improve green strength, and up to about 5% by weight of a foaming agent.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: August 31, 1999
    Assignee: North American Refractories Co.
    Inventors: Regis M. Perich, Harold D. Prior, Jr., Daniel F. Fura
  • Patent number: 5833728
    Abstract: Provided is a method for the efficient preparation of fine hollow spherical glassy bodies having a high strength and excellent whiteness from a volcanic vitreous deposit as the starting material. The fine hollow spherical glassy bodies as desired can be prepared by dispersing 100 parts by weight of a powder of a volcanic vitreous deposit in an aqueous solution containing 1 to 10 parts by weight of aluminum sulfate, adding an aqueous alkaline solution to this liquid suspension to cause deposition of an alumina hydrate onto the surface of the particles of said powder and washing and drying of the solid material followed by a heat treatment for 1 second to 1 minute at a temperature of 900.degree. to 1100.degree. C.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: November 10, 1998
    Assignee: Agency of Industrial Science and Technology
    Inventors: Kunio Kimura, Hiroyuki Nakamura, Yukiyoshi Tamoto, Junichi Kimoto, Hiromi Okada
  • Patent number: 5783297
    Abstract: Materials with exceptional shock attenuating properties are chemically bonded ceramics having densities that range from 30 to 160 lb/cubic foot (0.48 to 2.56 g/cc) and porosities of 20% to 80%. The materials are chemically bonded ceramic composites based on Portland cement, silica fume, various hollow fillers, and may include a dispersing agent, any of a variety of fibers and water.
    Type: Grant
    Filed: August 16, 1995
    Date of Patent: July 21, 1998
    Assignee: Cemcom Corporation
    Inventors: Sean Wise, Claudio J. Herzfeld
  • Patent number: 5714000
    Abstract: Disclosed is a rigid fine-celled foam composition and a method of producing it. The foam composition is nontoxic, environmentally friendly, has improved absorption/adsorption and retention of liquids, is not as hard as prior art foams, does not include polymerization by-products detrimental to flower and plant life, and is a foamed mixture of a caustic silicate solution derived from the caustic digestion of rice hull ash having diffused activated carbon particles from thermal pyrolysis of rice hulls rather than from commercial sodium silicate solutions. Valuable by-products of commodity grade are obtained including activated carbon and sodium fluoride.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: February 3, 1998
    Assignee: Agritec, Inc.
    Inventors: Clyde W. Wellen, Douglas K. Stephens, Greg R. Wellen
  • Patent number: 5635292
    Abstract: Incorporation of solid removable aggregates into powdered cement which later completely dissolve, evaporate, volatilize, or melt leaving voids in the cement composition is discussed. Cementitious articles are prepared by manipulating powdered hydraulic cement or cement paste compositions into mechanically self-supporting structures of a predetermined configuration and thereafter hydrating the hydraulic cement compositions without mechanical mixing of the cement and water.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: June 3, 1997
    Assignee: E. Khashoggi Industries
    Inventors: Hamlin M. Jennings, Simon K. Hodson
  • Patent number: 5614255
    Abstract: Proposed is an efficient method for the preparation of vitreous hollow microspheres from particles of a vitreous volcanic deposit by a heat treatment to effect expansion of the particles by foaming. The inventive method comprises a step, prior to the heat treatment for expansion of the particles, in which the starting particles are dispersed in an aqueous medium containing aluminum sulfate and urea each in a specified concentration followed by a heating treatment of the dispersion so as to deposit a coating layer of aluminum hydroxide on the particle surface so that the efficiency of foaming can be greatly improved without the disadvantage of particle agglomeration.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: March 25, 1997
    Assignee: Japan as represented by Director General of Agency of Industrial Science and Technology
    Inventors: Kunio Kimura, Hiroyuki Nakamura, Yukiyoshi Tamoto, Junichi Kimoto, Hiromi Okada
  • Patent number: 5611853
    Abstract: A composition of matter comprising naturally-occurring humic allophane soil or Ando soil as an essential ingredient admixed with a binder material, said composition is useful in preparation of solid media effective as deodorant, absorbent, adsorbent and the like for treating fluids, in particular contaminated water and malodor air.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: March 18, 1997
    Assignees: Haruo Morimoto, Katusi Maeno, Takahiro Yamada
    Inventor: Haruo Morimoto
  • Patent number: 5562767
    Abstract: Manufactured aggregates and/or composites having incorporated therein an asphaltic oxidation product.
    Type: Grant
    Filed: November 27, 1995
    Date of Patent: October 8, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: F. MacGregor Miller, Timothy J. Roth, William R. Welliver, Alexander Mishulovich, Mark S. Hudson
  • Patent number: 5503931
    Abstract: An improved moisture absorbing amorphous silicate material formed by the steps of: parboiling rice under 22 psi and at a temperature above 212 degrees F. to force bran into the rice grain and dissolve cellulose from the rice hulls creating voids in the rice hulls; drying the parboiled rice; milling the parboiled rice into grain, bran, and broken rice hulls; separating the broken rice hulls from the grain and bran; and burning the broken rice hulls at high temperatures to produce a skeletal residue of amorphous silicate material. Several uses of the amorphous silicate material are disclosed.
    Type: Grant
    Filed: August 10, 1994
    Date of Patent: April 2, 1996
    Inventor: Elstun F. Goodman, Sr.
  • Patent number: 5393341
    Abstract: A method for the production of structural foam from air, water, foaming agent and an aggregate, particularly cement foam, for which cement slurry is blown under high pressure into a mixing chamber and mixed with a foaming agent and the mixture immediately thereafter is conveyed to an expansion nozzle, into which metered amounts of compressed air are blown.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: February 28, 1995
    Assignee: RUME Maschinenbau GmbH
    Inventors: Dieter Meier, Heinz Ruppert
  • Patent number: 5352288
    Abstract: A low cost cement composition that can be admixed with water and hydrothermally closed cured to give acid-resistant products of high compressive strength consisting essentially of, in parts by weight, 1 to 1.5 parts of a calcium oxide material containing at least about 60% CaO, 10 to 15 parts of pozzolanic material containing at least about 30% by weight amorphous silica, and 0.025 to 0.075 parts by weight of an alkali metal catalyst and building materials made therefrom as well as the method of making such building materials by closed curing.
    Type: Grant
    Filed: June 7, 1993
    Date of Patent: October 4, 1994
    Assignee: Dynastone LC
    Inventor: William A. Mallow
  • Patent number: 5336645
    Abstract: A soluble thermally cellulated, ceramic mold member, having gas evolved cells dispersed in a soluble crystalline matrix, the matrix consisting predominantly of at least one crystal phase selected from the group consisting of borates and phosphates of alkali metals, of divalent metals and of aluminum, and boron phosphate, and having at least one solubilizing agent selected from alkali metal compounds, divalent metal compounds and charred acrylic resin. A mixture capable of being thermally foamed to a cellulated body, the mixture consisting essentially of at least one phosphorous-containing compound, at least one boron-containing compound, at least one solubilizing agent selected from the group consisting of alkali metal compounds, divalent metal compounds and acrylic resins, at least one organic binder and a gas-evolving agent.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: August 9, 1994
    Assignee: Corning Incorporated
    Inventor: Hermann L. Rittler
  • Patent number: 5298068
    Abstract: The inorganic foam body consists of an at least partially open-cell foam formed by thermally foaming and hardening a mixture comprising an alkali water glass and a filler from the group of aluminum oxide, silicon dioxide, aluminous cement, crushed rocks, graphite or mixtures thereof. It is produced by heating a mixture comprising an alkali water glass and a filler from the group of aluminum oxide, silicon dioxide, aluminous cement, crushed rocks, graphite with a blowing agent, and preferably azodicarbonamide, at temperatures of at least 180.degree. C., and preferably of from 200.degree. C. to 300.degree. C. The foam body has a bulk density within the range of from 50 to 500 kg/m.sup.3, and preferably of from 50 to 400 kg/m.sup.3.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: March 29, 1994
    Inventor: Herbert Giesemann
  • Patent number: 5244726
    Abstract: A self-hardened, high temperature-resistant, foamed composite is described. An alkali metal silicate-based matrix devoid of chemical water has dispersed therein inorganic particulates, organic particulates, or a mixture of inorganic and organic particulates, and is produced at ambient temperature by activating the silicates of an aqueous, air-entrained gel containing matrix-forming silicate, particulates, flyash, surfactant, and a pH-lowering and buffering agent.
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: September 14, 1993
    Assignee: The HERA Corporation
    Inventors: Bill E. Laney, F. Truman Williams, Ronald L. Rutherford, David T. Bailey
  • Patent number: 5242494
    Abstract: This invention relates to a foamable silicate composition comprising (a) one or more alkali metal silicates, (b) a blowing agent, (c) a hardener which can be an acetate or a formate ester of a di-polyhydric alcohol or a polyoxyalkylene glycol and (d) a surfactant having a hydrophilic-lypophilic balance of at least 8. The formulations are readily produced by mixing the components, are pourable, pumpable and sprayable, and give rise to foams of excellent compressive strength and thermal insulation properties under ambient conditions.
    Type: Grant
    Filed: August 5, 1991
    Date of Patent: September 7, 1993
    Assignee: British Technology Group Ltd.
    Inventors: Ian C. Callaghan, Elizabeth C. Cooper, Anne Lepre, Alistair S. Taylor
  • Patent number: 5164003
    Abstract: A silica-based coating for, and a method for coating glass, metal, ceramic, and plastic surfaces by forming single cross-linked O-Si-O polymer chains. The coating generally comprises a binder and a filler. The binder is a mixture of silica-based polymers, colloidal silica, and metal oxide particles in an aqueous suspension. It includes four main ingredients: an alkali metal silicate; silica gel; a cross-linking agent such as methyltrimethoxysilane or tetraethoxysilane; and water. After curing, the binder forms an amorphous layer that binds the fillers to the surface. The protective coating is formed at room temperature, without the addition of energy in any form. The fillers are chosen to provide the coating with mechanical strength, abrasion resistance, and increased corrosion resistance. Fillers may also be chosen to modify the coating's dielectric constant, to improve the coating's surface lubricity, and to alter the coating's thermal coefficient of expansion.
    Type: Grant
    Filed: March 28, 1990
    Date of Patent: November 17, 1992
    Assignee: Ceram Tech International, Ltd.
    Inventors: Paul N. Bosco, Terrance Fay
  • Patent number: 5160540
    Abstract: A method for producing a concrete with a controllable density, which at the density of 1200 kg/m.sup.3 has a compression strength of at least 3.5 MPa and after that linearly increases to at least 19 MPa at 2,000 kg/m.sup.3, characterized in mixing a base concrete mixture mainly consisting of cement and water with a porousity mixture mainly consisting of cement, water and a foaming agent so that the foaming agent constitutes at least approximately 5% by volume of the porousity mixture, and that the resultant mixture of the base concrete mixture and the porousity mixture is moulded in a conventional manner.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: November 3, 1992
    Assignee: Danes Verkstader AB
    Inventors: Ingemar Johansson, Kjell Svedman
  • Patent number: 5143777
    Abstract: A ceramic material for making ceramic moulds and core for metal casting is described comprising basically granular or bubble refractory material, e.g. alumina or mullite, bound together by hardened ceramic slurry. Moulds for lost wax casting are built-up by dipping a wax pattern in ceramic slurry and then applying granules of bubble alumina in an all over coating. A plurality of such coats may be applied by allowing the slurry to harden between applications. The moulds are more insulating than those using tubular alumina grits, for example, and produce castings with smoother surface finishes.
    Type: Grant
    Filed: May 3, 1990
    Date of Patent: September 1, 1992
    Assignee: Rolls-Royce plc
    Inventor: David Mills
  • Patent number: 5085897
    Abstract: The use of a liquid mixture of a liquid alkali-metal silicate preferably sodium or potassium silicate and more preferably sodium silicate with an inert mineral filler selected from perilite and vermiculite, suitably in an amount from 5 to 50% by weight and a mineral powder suitably selected from aluminum trihydrate and Wollastonite in an amount such as to intumesce with said silicate and to form a non-porous ceramic coating when subject to fire and suitably in an amount from 2 to 25% by weight for the protection of steel beams and columns against twisting due to fire. The formation of such coating both insulates and protects the steel beam or column from the heat from said fire. Suitably the thickness of the coating is at least two inches and is preferably from 2 to 4 inches to achieve the protection.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: February 4, 1992
    Assignee: Radixx/World, Ltd.
    Inventor: John S. Luckanuck
  • Patent number: 5084101
    Abstract: A composition for the production of an open-pore foam product from essentially inorganic components contains, in addition to known components, a rock-forming solid substance, a curing agent, a foaming additive, and an at least partly alkali-soluble protein to produce open pores. The rock-forming component is a reactive solid substance selected from the group consisting ofI finely dispersed oxide mixture containing amorphous silicon dioxide and aluminium oxide,II vitreous, amorphous electrofilter ash,III milled calcined bauxite,IV electrofilter ash from a brown coal power station,V undissolved amorphous silicon dioxide from an amorphous disperse powder-like, dehydrated or water-containing silicic acid or from high temperature processes (silica fume),VI metakaolin, andVII cement.The curing agent is an alkali metal silicate solution containing 1.2 to 2.5 mols of silicon dixoide per mol of potassium oxide and/or sodium oxide.
    Type: Grant
    Filed: August 29, 1990
    Date of Patent: January 28, 1992
    Assignee: Huels Troisdorf AG
    Inventors: Hans W. Engels, Karlheinz Neuschaffer
  • Patent number: 5082494
    Abstract: A composition for use in manufacturing fire and heat resistant components, typically by moulding, comprises a mixture of foamed filler, a liquid binder and one or more frits. The composition may itself be moulded to form such components or may be included in other moulding systems to impart fire and heat resistant properties to a moulding.
    Type: Grant
    Filed: December 5, 1988
    Date of Patent: January 21, 1992
    Assignee: Crompton Design Manufacturing Limited
    Inventor: Geoffrey Crompton
  • Patent number: 5017523
    Abstract: Ultra-fine hollow glass spheres suitable as a filler in light-weight composite materials for building use and the like can be prepared from a fine powder of volcanic glass even when the starting powder has a particle size as fine as 20 .mu.m or smaller. The inventive method comprises an acid-leaching treatment of the starting powder using hydrochloric or sulfuric acid under hydrothermal conditions at 150.degree.-200.degree. C. to modify the chemical composition in the surface layer of the particles and a subsequent heat treatment of the acid-treated particles at a specified high temperature to effect expansion by the water vapor produced from the structural water in the softened particles. By virtue of the modified composition in the surface layer and in contrast to the prior art method without the acid treatment, a good balance can be obtained between the rate of water vapor release and softening of the particles even when the particle size is extremely small to facilitate expansion of the particles.
    Type: Grant
    Filed: March 9, 1990
    Date of Patent: May 21, 1991
    Assignee: Japan as represented by Director General of Agency of Industrial Science and Technology
    Inventors: Kunio Kimura, Kazuhiko Jinnai, Hiroshi Tateyama