Combustion Product Patents (Class 110/344)
  • Patent number: 7691344
    Abstract: An oil reconversion devices 1a and 1b for waste plastics which thermally crack a waste plastic Ro by heating it and converts a generated cracker gas Gr into oil by cooling it, equipped with a thermal cracking bath 2 which has a bath main body 4 placed inside a coil 3 . . . , induction-heats the bath main body 4 by feeding a high-frequency current through the coil 3 . . . , and thermally cracks at least a molten plastic Rd obtained from the waste plastic Ro to generate the cracker gas Gr, an injection port 5 through which the waste plastic Ro is injected, a feeder 6 which supplies the waste plastic Ro injected through this injection port 5 to the thermal cracking bath 2 via a forced or direct feeding means Ua or Ub without a bath, and an oil conversion processor 7 which cools and converts the cracker gas Gr generated by the thermal cracking bath 2 into oil.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: April 6, 2010
    Inventor: Takeki Yoshimura
  • Publication number: 20100077946
    Abstract: An oxy/fuel combustion system having a furnace arranged and disposed to combust a fuel to form a combustion fluid. The system further includes a convective section having at least one heat exchanger arranged and disposed to exchange heat between the combustion fluid and steam for use in a steam turbine. A flue gas recycle is arranged and disposed to recycle at least a portion of the combustion fluid as a recycled flue gas, the flue gas recycle having at least two expellant locations downstream of a primary combustion zone. The system includes a flow control mechanism that provides controlled amounts of the recycled flue gas to the at least two expellant locations to control temperature of the steam.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Mark Daniel D'Agostini
  • Publication number: 20100006014
    Abstract: Disclosed is a process that increases the output of a combustor fired with coal having high iron and/or calcium content, by reducing the tendency of slag to form on heat exchange surfaces and changing the nature of the slag to make it easier to remove. The process includes combusting a slag-forming coal, having high iron and/or calcium content, with an overall excess of oxygen; moving the resulting combustion gases though heat exchange equipment under conditions which cause cooling of slag formed by burning the fuel; and prior to contact with said heat exchange equipment, introducing aqueous aluminum trihydroxide in amounts and with droplet sizes and concentrations effective to decrease the rate of fouling, and preferably, increase the friability of the resulting slag.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 14, 2010
    Applicant: FUEL TECH, INC.
    Inventors: Christopher R. Smyrniotis, Kent W. Schulz, Emelito P. Rivera
  • Patent number: 7614352
    Abstract: Both a process and an apparatus whereby a fuel with both a high carbon content, a relatively high sulphur content and a relatively low ash content, can be combusted without the release of potentially damaged amounts of carbon dioxide and sulphur dioxide are described. Further, the process and apparatus each provide an operation whereby the carbon dioxide and sulphur dioxide emissions form the combustion of a carbonaceous fuel with both a high carbon content and a relatively high sulphur content can each be recovered as a useable product. Typically the fuel is petroleum coke, or certain grades of anthracite, coal and natural gas.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: November 10, 2009
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Natural Resources
    Inventors: Edward John Anthony, J. Carlos Abanades
  • Publication number: 20090120338
    Abstract: The invention relates to a process and an apparatus for low-NOx combustion with at least one burner (5) using fuel and oxidizing agent and/or furnace off-gases and/or carbon dioxide and/or steam. The low-NOx combustion according to the invention can be used in conventional melting and holding furnaces, in particular in aluminum holding furnaces or rotary drum furnaces and glass-melting furnaces, with the potential for considerable economies to be made.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 14, 2009
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude ET L 'Exploitation Des Procedes Georges Claude
    Inventors: Martin Adendorff, Lothar Backes, Horst Koder
  • Publication number: 20090031929
    Abstract: A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant.
    Type: Application
    Filed: May 8, 2008
    Publication date: February 5, 2009
    Inventors: Richard D. Boardman, Robert A. Carrington
  • Patent number: 7476372
    Abstract: A method for reducing acid gases in a flue gas, the method comprising reacting biosolids comprising a scrubbing agent with a flue gas comprising an acid gas, thereby reducing the amount of acid gas in the flue gas is disclosed. Also disclosed is a flue gas scrubbing process comprising: combusting a fossil fuel and biosolids comprising a scrubbing agent, thereby producing a flue gas comprising an acid gas, wherein the flue gas has a reduced amount of acid gas compared with flue gas produced from the combustion of the fossil filet alone. A flue gas scrubbing process comprising providing a stream of biosolids that includes a hydroxide or an oxide of a Group IA or IIA element, providing a flue gas comprising an acid gas, and reacting the biosolids stream with the flue gas so as to reduce the amount of acid gas in the flue gas is also disclosed.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 13, 2009
    Assignee: Holloman Corporation
    Inventor: Eric Prim
  • Publication number: 20080229985
    Abstract: The present invention is about a process for treating all the ashes produced by a coal dust boiler (1), able to reduce the total unburnt matter content, to increase the combustion efficiency of the boiler (1), and to have the light ashes as the only waste arising from the coal combustion. In particular, said process provides for the extraction of the heavy ashes (4) from the boiler bottom (23), the ashes coming from the hoppers of the economizers (5) and the fraction of light ash richer of unburnt matter coming from the filters (11) used to collect the dust from the flue gas; said ashes are mixed in a silo (15), proportioned and transferred in one or more feeders (17) of the coal mills (18), and reintroduced in the boiler (1) after being mixed with the coal through the burners (2).
    Type: Application
    Filed: July 8, 2005
    Publication date: September 25, 2008
    Inventors: Mario Magaldi, Rocco Sorrenti
  • Publication number: 20080149010
    Abstract: Through the addition of tertiary air and a reduction of secondary air, NOx emissions from a waste-to-energy (WTE) boiler may be reduced. The tertiary air is added to the WTE at a distance from the secondary air, in a boiler region of relatively lower temperatures. A secondary NOx reduction system, such as a selective non-catalytic reduction (SNCR) system using ammonia or urea, may also be added to the boiler with tertiary air to achieve desirable high levels of NOx reductions. The SNCR additives are introduced to the WTE boiler proximate to the tertiary air.
    Type: Application
    Filed: October 4, 2007
    Publication date: June 26, 2008
    Inventors: Stephen P. Goff, Mark L. White, Stephen G. Deduck, John D. Clark, Christopher A. Bradley, Robert L. Barker, Zenon Semanyshyn
  • Publication number: 20080105176
    Abstract: A staged-coal injection procedure for coal-fired boilers used in power generation. The procedure includes the steps of combusting a first type of coal in a first zone of a furnace; and combusting a second type of coal in a second zone of the furnace. The second zone is at a position separate from the first zone.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 8, 2008
    Applicant: ELECTRIC POWER RESEARCH INSTITUTE, INC.
    Inventors: Ramsay Chang, Anthony Facchiano
  • Publication number: 20080053348
    Abstract: The present invention is concerned with a method of controlling on-line the steam output of a waste incineration plant that is fed with waste of varying composition. Process or system quantities (u2, u3, xGC, xLL, w0) are measured repeatedly, at different times during operation of the plant, and a relation with linear parameters (?i) as coefficients of non-linear expressions (?i) of the process quantities is established by evaluating said measurements. From this relation, an optimal waste feed rate to obtain a desired steam output ({dot over (M)}steam) is determined and applied to a waste feed actuator of the waste incineration plant.
    Type: Application
    Filed: March 6, 2007
    Publication date: March 6, 2008
    Applicant: ABB Technology AG
    Inventors: Silvia Bardi, Alessandro Astolfi
  • Patent number: 7302897
    Abstract: A system for disposing of municipal solid waste provides commercially-available equipment that is modified to initially remove identifiable unwanted components from the waste, and then chop the waste into small pieces of a size suitable for handling, separation and combustion. The moisture content of the waste is reduced in a closed system by passing dry air through the waste in a confined space to absorb moisture and produce moist air, which is then dehumidified via refrigeration equipment. The dehumidified air is recycled through the waste repeatedly through the closed system until the water content has reached the predetermined amount. The waste is stored in a bunker for later use or is immediately combusted in a two-step process by first gasifying the dried waste to produce combustible syngas and then immediately or later combusting the gas in a gas turbine or other engine to produce electricity that is partly used to power the process and partly sold commercially.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 4, 2007
    Inventors: Richard B. Pallett, Warren Hyland
  • Patent number: 7140309
    Abstract: A method and system for clean burning organic or synthetic material, particularly vulcanized rubber, where fuel is ignited and the heat and smoke by-product is maximized by controlling the amount of oxygen available to the fire. The smoke by-product in an afterburner is reacted with steam, producing hydrogen and carbon monoxide, the products may be collected and stored. The extreme heat in the afterburner reduces the amount of pollutants and toxins in the air. Excess heat generated by burning the fuel may be used to power an engine.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: November 28, 2006
    Assignee: New Energy Corporation
    Inventor: Max D. Behunin
  • Patent number: 7047894
    Abstract: A system for combustion and removal of residual carbon within fly ash particles in which the fly ash particles are fed into an array of process units for combustion. The fly ash particles are subjected to heat and motive air such that as the fly ash particles pass through the particulate bed, they are heated to a sufficient temperature to cause the combustion of the residual carbon within the particles. The fly ash particles thereafter are conveyed in a dilute phase for further combustion through the reactor chamber away from the particulate bed and exhausted to an ash capture. The fly ash is then separated from the exhaust air that conveys the ash in its dilute phase with the air being further exhausted and the captured fly ash particles being fed to a feed accumulator for re-injection to the reactor chamber or discharge for further processing.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: May 23, 2006
    Assignee: Consolidated Engineering Company, Inc.
    Inventors: Paul M. Crafton, James L. Lewis, Jr., William Thome
  • Patent number: 7040240
    Abstract: An ash melting system of the present invention includes a slagging combustion furnace (10) for melting ash into molten slag; and a slag separating apparatus (50) for bringing the molten slag (121) discharged from the slagging combustion furnace into contact with slag cooling water (152) to produce water-quenched slag (122), and separating the water-quenched slag from the slag cooling water. The ash melting system further includes a gas blowing means for blowing air or inert gas (132) between a slag discharge port (14) of the slagging combustion furnace and the surface of the slag cooling water.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: May 9, 2006
    Assignee: Ebara Corporation
    Inventors: Chikao Goke, Nobuya Azuma, Masaaki Irie, Kazuo Takano, Tetsuhisa Hirose, Kazuaki Watanabe
  • Patent number: 6997119
    Abstract: A process for controlling both fireside ash deposits and corrosion, and fouling, corrosion, and emissions due to SO3 formation within a fossil-fuel-fired combustion system, such as a furnace forming part of an electrical power generating plant. A solution of a soluble magnesium compound, which can be derived from wastes, such as the bleed stream from the power plant's SO2 scrubber, is injected into the combustion products within the furnace in the form of a fine spray and at a point at which the temperature is sufficiently high to produce submicron-size MgO particles. The SO3 reacts with the MgO particles to form MgSO4. Insoluble magnesium compounds can be added to the solution to produce larger (micron sized) MgO particles on thermal decomposition. The micron-sized MgO particles are deposited on furnace surfaces to reduce ash deposits and to reduce catalytic generation of SO3. The boiler wastes can be reacted with other industrial process waste products to provide marketable chemicals.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: February 14, 2006
    Inventor: Jerrold E. Radway
  • Patent number: 6895875
    Abstract: A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: May 24, 2005
    Assignee: General Electric Company
    Inventors: Vitali Victor Lissianski, Peter Martin Maly, William Randall Seeker, Roy Payne, Vladimir M. Zamansky, Loc Ho
  • Publication number: 20040237861
    Abstract: The slagging combustion furnace (10) of the present invention includes a combustion chamber (11, 12, 13) for combusting a combustible gas containing ash and melting the ash, and a slag discharge port (17) for discharging molten slag (20) produced by melting the ash. The slag discharge port (17) is formed by refractory material which is replaceable.
    Type: Application
    Filed: January 30, 2004
    Publication date: December 2, 2004
    Inventors: Nobuya Azuma, Shigeru Kosugi, Takashi Nakajima, Tetsuya Ando, Toshio Kojima
  • Patent number: 6814013
    Abstract: In the process for treating incineration residues from waste incineration plants, the incineration material is incinerated on a furnace grate. The incineration residues produced are quenched in a wet slag remover and conveyed out of the latter. The wet incineration residues which come out of the wet slag remover are firstly divided into two fractions by means of a screening operation, after which the main fraction is washed with water taken from the wet slag remover, and in the process adhering fine pieces are separated off. The washed pieces of the incineration residues are fed for reuse. The washing water together with the ultra fine pieces which have been taken up during the washing operation pass into the wet slag remover. The fine fraction produced during the mechanical separation operation is fed back to the incineration operation.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: November 9, 2004
    Assignees: Martin GmbH für Umwelt-und Energietechnik, Mitsubishi Heavy Industries, Ltd.
    Inventors: Johannes Martin, Oliver Gohlke, Joachim Horn, Michael Busch
  • Patent number: 6796251
    Abstract: Incineration is controlled in such a way that a sintering and/or fusing of the slag takes place as early as in the incineration bed of the main incineration zone. The incineration residues produced are quenched in a wet slag remover and conveyed out of the latter. The wet incineration residues which come out of the wet slag remover are firstly divided into two fractions by means of a screening operation, after which the main fraction is washed with water taken from the wet slag remover, and in the process adhering fine pieces are separated off. The washed pieces of the incineration residues are fed for reuse. The washing water together with the ultra fine pieces which have been taken up during the washing operation pass into the wet slag remover. The fine fraction produced during the mechanical separation operation is fed back to the incineration operation.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: September 28, 2004
    Assignees: Martin GmbH Für Umwelt-und Energietechnik, Mitsubishi Heavy Industries, Ltd.
    Inventors: Johannes Martin, Oliver Gohlke, Joachim Horn, Michael Busch
  • Patent number: 6773471
    Abstract: The present invention is directed to additives for coal-fired furnaces, particularly furnaces using a layer of slag to capture coal particles for combustion. The additive(s) include iron, mineralizer(s), handling aid(s), flow aid(s), and/or abrasive material(s). The iron and mineralizers can lower the melting temperature of ash in low-iron, high alkali coals, leading to improved furnace performance.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: August 10, 2004
    Assignee: ADA Environmental Solutions, LLC
    Inventors: Stephen Allen Johnson, John Wurster, John Philip Comer
  • Patent number: 6767163
    Abstract: A plasma process and equipment for eliminating toxic or hazardous organic compounds from different materials, particularly petroleum and oil contaminated soils. The process and equipment can also be used to remove the hydrocarbons contained in the sludge formed at the bottom of petroleum storage tanks. The process utilizes a plasma system for providing the necessary energy to the contaminated soil or sludge for the hydrocarbons to volatilize, keeping the temperature inside the reactor between 400 and 900° C. The volatilized compounds after leaving the reactor are collected in condensers, where the hydrocarbons can be recovered, in the form of a liquid hydrocarbon (oil). The contaminated material is continuously fed into the reactor from one end, while the clean material is removed from the other end of the reactor. The atmosphere inside the reactor is maintained neutral or reducing in order to prevent the oxidation of the hydrocarbons. Minimum amounts of off gases are generated in the process.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: July 27, 2004
    Assignee: TSL-Engenharia, Manutencao E. Preservacao Ambiental Ltda.
    Inventor: Fernando Carvalho Almeida
  • Patent number: 6748882
    Abstract: In a process for influencing the properties of incineration residues from an incineration plant, in particular a waste incineration plant, the incineration is controlled sot that a sintering and/or fusing of the slag takes place as earl as in the incineration bed of the main incineration zone, and as yet unsintered or unfused incineration residues are separated off at the end of the incineration operation and fed back to the incineration operation.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: June 15, 2004
    Assignees: Martin GmbH für Umwelt-und Energietechnik, Mitsubishi Heavy Industries, Ltd.
    Inventors: Johannes Martin, Oliver Gohlke, Joachim Horn, Michael Busch
  • Patent number: 6733635
    Abstract: A coke oven buckstay moving device and method which can be used to quickly, reliably, and smoothly repair buckstays compared to conventional methods and devices. The coke oven buckstay moving means includes a main car, a subcar, a frame, and securing means. The main car is used when repairing pillered buckstays that support oven walls of the coke oven, and moves on a coke side platform or a machine side platform. The subcar is placed on the main car, and can freely move forward and backward in a direction of a lengthwise direction of the coke oven. The frame is provided in a standing manner on the subcar. The securing members are mounted to the frame and are used to grasp and secure the buckstays. According to the method, a damaged portion of the buckstay is secured to the subcar, cut, and then removed. Reversing the steps, a replacement buckstay is secured to the subcar, moved into position, and welded into place. The subcar is detached, and the oven repaired.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: May 11, 2004
    Assignee: JFE Steel Corporation
    Inventors: Tatsuya Ozawa, Nozomu Tamura, Tetsuro Uchida, Nobuya Kamide
  • Patent number: 6694900
    Abstract: The methods and systems of the present invention reduce NOx emissions in combustion systems, e.g., power plants, boilers, furnaces, incinerators, engines, and any combinations thereof. The inventive process decreases NOx emissions from stationary combustion sources and provides improved utilization of low-grade biomass and other waste fuels without slagging and fouling problems. The invention reduces NOx emissions while utilizing gasified fuels, including biomass and low-grade waste fuels, by gasifying solid fuels and injecting produced gas into a reburning zone of, for example, a boiler at relatively low temperatures and in relatively small amounts. By feeding the gas directly into a reburning zone, the need for gas cleaning is eliminated or substantially reduced as tars are burned in the flame and alkali species may be present at much lower levels than is the case with direct combustion applications.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: February 24, 2004
    Assignee: General Electric Company
    Inventors: Vitali Lissianski, George Rizeq, Vladimir Zamansky
  • Patent number: 6688106
    Abstract: A waste-to-energy incineration system, in which the amount and heat value of exhaust gas largely changes in long and short periods, comprises an incinerator for burning waste, a boiler in the incinerator for generating steam with exhaust heat generated by the incinerator, a superheater for superheating steam generated in the boiler, a steam turbine driven by steam superheated by the superheater, a generator driven by the steam turbine, a fuel reformer for reforming source fuel, and a combustor burning fuel gas reformed by the fuel reformer and at least a part of exhaust gas led from the incinerator which is able to stably decompose generated dioxin in waste incineration exhaust gas.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: February 10, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Tsutomu Okusawa, Kazuhito Koyama, Masahiko Yamagishi, Shigeo Hatamiya, Taiko Ajiro, Megumi Sunou, Yukio Ishigaki, Kenji Tokunaga
  • Patent number: 6505567
    Abstract: A circulating fluidized bed steam generator 10 and a method for operating the circulating fluidized bed steam generator are provided which offer the flexibility to use carbon dioxide (CO2) both as a desirable end product and as support to the combustion process. The method includes the step of introducing a substantially pure oxygen feed stream into the circulating fluidized bed steam generator 10 and the step of combusting a fuel in the presence of the substantially pure oxygen feed stream to produce a flue gas having carbon dioxide and water vapor as its two largest constituent elements by volume. The method also includes the step of passing the flue gas through an oxygen feed stream pre-heater 144 at which heat from the flue gas is transferred to the oxygen feed stream. Furthermore, the method includes the step of separating the flue gas into an end product portion and a recycling portion.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: January 14, 2003
    Assignee: ALSTOM (Switzerland) Ltd
    Inventors: David K. Anderson, Greg N. Liljedahl, John L. Marion
  • Patent number: 6490984
    Abstract: Formation of dioxins in flue gases is inhibited by contacting the flue gas with at least one of sodium phosphite, calcium phosphate, sodium hypophosphite, and calcium as reducing agents preferably at a temperature in the range of from 150° C. to 850° C. Hydrogen chlorides are also rendered harmless by the contact with the reducing agent. Also, metal ions contained in the fly ash of the flue gas are reduced to metals to reduce the occurrence of dissolution of the metals in subsequent treatment of the fly ash.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: December 10, 2002
    Assignee: Miyoshi Yushi Kabushiki Kaisha
    Inventors: Masafumi Moriya, Masatake Kawashima, Takashi Ogawa, Kazuhiro Terada
  • Patent number: 6485289
    Abstract: A NOx reduction burner system and process. Fuel modification and fuel rich reactor zone gases are brought together with products from a fuel lean reactor zone in a low temperature burnout and NOx reduction reactor zone. The fuel modification fuel rich reactor stabilizes combustion through recirculation of hot gases to the reactants. Nitrogenous species decay reactions in the fuel rich zone controls the production of NOx. The nitrogenous species from the fuel rich zone and the NOx from the fuel lean zone then react in the burnout zone at an optimal temperature and nitrogenous species mix where NOx is minimized. Temperature in all zones, and in particular the burnout zone, can be controlled by furnace gas entrainment, induced flue gas recirculation, forced flue gas recirculation and active cooling by radiative and/or convective heat transfer. NOx can be even further reduced by introducing ammonia, or a like amine species, into the low temperature burnout zone.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: November 26, 2002
    Assignee: Altex Technologies Corporation
    Inventors: John T. Kelly, Mehdi Namazian
  • Publication number: 20020117094
    Abstract: A method and apparatus for controlling or removing mercury, mercury compounds and high molecular weight organics, if present, from a resource recovery exhaust stream by separately adding a carbonaceous char to the flue gas while it is still within the unit. The char can be produced in situ by adding a carbonaceous material and allowing it to thermally decompose.
    Type: Application
    Filed: February 28, 2002
    Publication date: August 29, 2002
    Inventors: Aaron J. Teller, Jonathan R. Lagarenne
  • Patent number: 6431095
    Abstract: The method is applicable to a combustion system of the circulating fluidized bed type which system includes a hearth and a cyclone, and operates using fuel that is inserted into the bottom of the hearth, where a reducing atmosphere is created and where the fuel undergoes pyrolysis with separation into two phases, namely a solid phase made up of grains of coke, and a gaseous phase containing volatile matter. Provision is made for a primary air injection, secondary air injections, and a late air injection to be performed at different levels. The late air injected between the top of the hearth and the inlet of the cyclone is used to increase the efficiency with which the cyclone collects the particles that reach the top of the hearth unburnt, and thus to increase the combustion efficiency of the system. The system includes air injection means making it possible to implement the method.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: August 13, 2002
    Assignee: ABB Alstom Power Combustion
    Inventors: François Malaubier, Patrick Duche
  • Patent number: 6318277
    Abstract: A method and apparatus for reducing NOx emissions in a furnace having a main combustion zone with a waterwall and apparatus for supplying main combustion air and fuel to the main combustion zone, also reduces unburned carbon and waterwall corrosion in the furnace. The method involves providing at least one lower overfire air injector at a first level over the main combustion zone of the furnace for supplying overfire air to create a lower overfire air zone in the furnace over the main combustion zone and at least one upper overfire air injector at a second level over the lower overfire zone for supplying overfire air to create an upper overfire air zone in the furnace over the lower overfire zone. The overfire air in the lower and upper overfire air zones are supplied at a rate for reducing the stoichiometry in the main combustion zone which reduces unburned carbon and a corrosive reducing atmosphere in the furnace.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: November 20, 2001
    Assignee: The Babcock & Wilcox Company
    Inventor: Angelos Kokkinos
  • Patent number: 6305302
    Abstract: An apparatus for providing waste tire gasification in a negative ambient pressure environment includes a gasification unit, a combustion unit, and a connection pipe. The gasification unit includes a gasification chamber, at least one air vent, at least one gasification igniter, and a fan. The combustion unit includes a combustion chamber, and an exhaust pipe. The connection pipe connects the output of the gasification unit with the combustion unit. In operation, tires are placed inside the gasification chamber. The tires are ignited using the gasification igniter. The rapid oxidation of the tires is fed with the air entering the at least one air vent. Combustion gases generated from the oxidizing tires are pulled out of the gasification chamber through a vacuum pipe with the fan. The gases are pushed through the connection pipe in to the combustion chamber. The combustion gases are ignited in the combustion chamber with at least one combustion igniter.
    Type: Grant
    Filed: January 6, 2001
    Date of Patent: October 23, 2001
    Assignee: Waste Tire Gas Technologies, Inc.
    Inventor: Richard L. Kleiss
  • Patent number: 6260492
    Abstract: A method of combustion in a pressurized, fluidized bed and in the freeboard thereof. The combustion method is further characterized by the recirculation of solid sulfur absorbing materials. A gas channel, designed so as to prevent fluidizing gas from entering the channel from below, is provided such that it opens to the freeboard and to a separating member which separates particulate matter from the combustion gasses.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: July 17, 2001
    Assignee: ABB Carbon AB
    Inventors: Christopher Adams, Jim Anderson, Mats Andersson, Roine Brännström, John Weatherby
  • Patent number: 6250236
    Abstract: A preferred waste treatment system and method employs multiple reactor zones for processing heterogeneous waste. In one embodiment, the reactor system (10) includes the following components: first (12) and second (14) solid waste feed subsystems; a liquid waste feed subsystem (16); a plasma torch or gas burner (18) for heating a preliminary vitrification chamber (20) of the reactor system (10); a joule effect heater (22) for heating a vitrification chamber (24); a gaseous effluent processing subsystem (26); first (30) and second (32) slag discharge processing subsystems; and a bulk processing unit (400), including a loading and/or cooling area (406), a waste destruction chamber (408) heated to temperatures between about 250° F. and 2100° F.; a conveying mechanism (418) between the loading area (406) and the waste destruction chamber (408). In an alternative embodiment, each of the reactor zones is heated by joule effect heaters.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: June 26, 2001
    Assignee: Allied Technology Group, Inc.
    Inventor: Fred Feizollahi
  • Patent number: 6216611
    Abstract: An apparatus for treating organic waste material characterized by high ash content is disclosed.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: April 17, 2001
    Assignee: Minergy Corp.
    Inventor: Thomas J. Baudhuin
  • Patent number: 6216612
    Abstract: A system for collecting ultra fine fly ash from a dry fly ash removal system includes providing a bagfilter transport conduit for each bagfilter of the system. A vacuum shutoff valve is positioned in each bagfilter transport conduit. The bagfilter transport conduit is selectively connected to an educator that is, in turn, selectively connected to a blower. The blower creates a vacuum flow in the transport conduit that draws the ultra fine fly ash from the bagfilter and deposits the ultra fine fly ash in a collection bin. This system allows a dry fly ash removal system to segregate fly ash by size and separately collect the ultra fine fly ash from the larger fly ash particles. The ultra fine fly ash has been found to be commercially valuable as a concrete admixture filler in various applications.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 17, 2001
    Assignee: American Electric Power Service Corporation
    Inventors: John D. Hume, R. F. Ridgeway, J. F. Mainieri
  • Patent number: 6213033
    Abstract: The present invention relates to a method for treating water material containing hydrocarbon, wherein the waste material is supplied in a reactor, gas containing oxygen is supplied in the reactor, said substances are combusted to form gaseous combustion products and solid residue and said solid residue is discharged from the reactor. The gas containing oxygen is supplied continuously in the reactor in amounts insufficient for complete oxidation of the waste material, said gas containing oxygen is supplied so as to pass it through a layer of said solid residue and the gaseous combustion products are passed through a layer of untreated waste material to form a product gas containing hydrocarbons and droplets of liquid hydrocarbons.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: April 10, 2001
    Assignee: Fioter Oy
    Inventors: Georgi Manelis, Victor Foursov, Galina Yakovleva, Sergei Glazov, Lev Stesik, Evgeni Poliantchik, Nikolai Alkov
  • Patent number: 6206685
    Abstract: Various methods for decreasing the amount of nitrogen oxides released to the atmosphere as a component of combustion gas mixtures are provided. The methods specifically provide for the removal of nitric oxide and nitrogen dioxide (NOx) from gas mixtures emitted from stationary combustion systems. In particular, methods for improving efficiency of nitrogen oxide reduction from combustion systems include injecting metal-containing compounds into the main combustion zone and/or the reburning zone of a combustion system. The metal containing compounds react with active combustion species, and these reactions change radical concentrations and significantly improve NOx conversion to molecular nitrogen. The metal-containing additives can be injected with the main fuel, in the main combustion zone, with secondary or reburning fuel addition, or at several locations in the main combustion zone and reburning zone.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: March 27, 2001
    Assignee: GE Energy and Environmental Research Corporation
    Inventors: Vladimir M. Zamansky, Peter M. Maly, Jerald A. Cole, Vitali V. Lissianski, William Randall Seeker
  • Patent number: 6202573
    Abstract: A new apparatus and process for the removal of carbon fly ash, whereby carbon removal occurs through oxidation. The ignition of the carbon is accomplished by bulk heating and impingement of a suspended bed of fly ash by a heated oxidizing gas stream, and the desired level of carbon burnout is accomplished in a single chamber apparatus by maintaining combustion conditions. A substantial amount of the carbon removal may occur in the chamber in an environment that maintains temperature and oxygen levels lower than that required for carbon ignition. In one preferred embodiment of the invention, the carbon ignition and burnout may be performed in a single chamber by maintaining zones of varying temperature and oxygen level.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: March 20, 2001
    Assignee: U.S. Scientific, L.L.C.
    Inventor: Alan Bachik
  • Patent number: 6199492
    Abstract: A process for incinerating waste material to produce slag without the addition of fuel other than the waste material begins with carbonizing the waste material in a low temperature process in a generator to produce carbonized solid material with a high energy content and flammable gases which are extracted from the waste material. The carbonization and temperature in the generator are controlled by limiting the supply of air to the material in the generator, the temperature being less than 1000° C. The carbonized waste material and the carbonization gases are delivered together to a furnace which is supplied with excess air. The carbonized material and carbonization gases are incinerated at a high temperature, typically 1400° C., in the furnace, thereby substantially completely incinerating burnable products in the furnace and melting materials which will not burn. The result is a glassy slag which binds therein materials such as heavy metals which could otherwise be pollutants.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: March 13, 2001
    Inventor: Johann Hans Künstler
  • Patent number: 6176188
    Abstract: A method is provided for controlling the hydrocarbon release rate during thermal processing of materials having a variable caloric content.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: January 23, 2001
    Inventors: Paul H. Stevers, Roger D. Eshleman, Earl H. Sigman, John Kevin Pollard
  • Patent number: 6173663
    Abstract: A method of combusting pulverized coal by mixing the pulverized coal and an oxidant gas to provide a pulverized coal-oxidant gas mixture and contacting the pulverized coal-oxidant gas mixture with a flame sufficiently hot to combust the mixture. An oxygen-containing gas is passed in contact with a dense ceramic membrane of metal oxide material having electron conductivity and oxygen ion conductivity that is gas-impervious until the oxygen concentration on one side of the membrane is not less than about 30% by volume. An oxidant gas with an oxygen concentration of not less than about 30% by volume and a CO2 concentration of not less than about 30% by volume and pulverized coal is contacted with a flame sufficiently hot to combust the mixture to produce heat and a flue gas. One dense ceramic membrane disclosed is selected from the group consisting of materials having formulae SrCo0.8Fe0.2Ox, SrCo0.5FeOx and La0.2Sr0.8Co0.4Fe0.6Ox.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: January 16, 2001
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Arun C. Bose, Howard G. McIlvried
  • Patent number: 6119606
    Abstract: A system and a process for combusting hydrocarbons to recover energy and the carbon dioxide resulting from the combustion is provided. The process utilizes a two-stage combustion process, each stage utilizing water injection and a recirculation stream to increase the efficiency of combustion to generate larger proportions of carbon dioxide. An energy recovery boiler is used to recover heat energy from the combustion product. Combustion product is then cleaned and the carbon dioxide is separated and condensed into a useable liquid carbon dioxide product.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: September 19, 2000
    Assignee: M. Ltd.
    Inventor: Steve L. Clark
  • Patent number: 6105517
    Abstract: A process for treating toxic fly ash from an incinerator which comprises heating the fly ash held in suspension in a combustible or combusted gas at least to a temperature at which sintering of the fly ash takes place.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: August 22, 2000
    Assignee: University of Sheffield
    Inventor: Joshua Swithenbank
  • Patent number: 6095064
    Abstract: A method for the incineration of refuse in an incineration cylindrical rotary kiln and for treating the resulting slag from the incineration of the refuse. The method includes the steps of removing the slag or ash from the cylindrical rotary kiln in a dry state and immediately separating the slag or ash in a first screening stage into at least two fractions, including a first fraction or screen underflow having a particle size of less than 32 mm. The method includes the further steps of feeding the first fraction or screen underflow to a second classifying stage where the first fraction or screen underflow is separated into a fine function having a particle size of up to 2 mm and the further step of returning at least part of the fine fraction to an air-inlet side of the cylindrical rotary kiln for incineration of the fine fraction.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: August 1, 2000
    Assignee: ABB Alstom Power (Switzerland) Ltd
    Inventors: John Millard, Hans Ruegg
  • Patent number: 6067915
    Abstract: A method of charging a pyrolytic gas-producing reactor with waste fuel wherein the waste fuel is forced into the reactor by a ram and wherein air is prevented from entering the reactor and pyrolysis gases are prevented from escaping from the reactor by means of an ablative seal which is positioned between the fuel and the ram and which is forced by the action of the ram on the fuel charge into the reactor whilst in sealing engagement with the internal walls of the reactor, the seal being made of a material which will resist the high temperature and chemical conditions in the reactor for at least as long a period as is required for the seal to perform its sealing function and which is thereafter thermally decomposed into products which are not detrimental to the pyrolytic process or to the pyrolytic gases produced by the reactor.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: May 30, 2000
    Assignee: Compact Power Limited
    Inventor: John Ernest Elsom Sharpe
  • Patent number: 6067914
    Abstract: A method of operating a combustion unit of a coal-fired power plant operating according to a slag tap furnace firing method, which includes supplying a titanium-containing material in addition to coal to a melting chamber for accelerating coal burn-up, burning the titanium-containing material together with the coal in the melting chamber at a temperature above 1500.degree. C., and generating fly ash and molten ash as a result of combustion in the melting chamber. Additionally, a combustion unit for a coal-fired power plant, including a melting chamber that has a combustion zone for receiving coal. The combustion zone produces fly ash.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: May 30, 2000
    Assignees: Siemens Aktiengesellschaft, STEAG Aktiengesellschaft
    Inventors: Erich Hums, Horst Spielmann, Ralf Gilgen
  • Patent number: 6067916
    Abstract: In a process for gasifying and burning waste materials, the waste materials are introduced into an incinerator (1) and end up on a burning grate (6) to which combustion air is conducted through various undergrate forced draft chambers (8a to 8e). In the first area combustion air is introduced at a superstoichiometric level in order to ignite the waste materials. Then, via the undergrate forced draft chambers (8c to 8e), oxygen is mixed into the air which is used for the gasification, thereby establishing a substoichiometric level which results in gasification of the waste materials. The combustible gases which result from this process pass via a waste gas flue (12) into a second furnace (2), in which the gases are burned at a superstoichiometric level through the introduction of combustion air. The resulting waste gases pass to a heat exchanger (3).
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: May 30, 2000
    Assignee: Martin GmbH fur Umwelt- und Energietechnik
    Inventors: Johannes Martin, Michael Busch
  • Patent number: 6058856
    Abstract: A waste-to-energy incineration system, in which the amount and the heat value of exhaust gas changes during operation, includes an incinerator for burning waste, a boiler in the incinerator for generating steam with exhaust heat generated by the incinerator, and a superheater for superheating steam generated in the boiler. A steam turbine is provided which is driven by steam superheated by the superheater and a generator is driven by the steam turbine. A fuel reformer is provided for reforming source fuel. A combustor burning fuel gas reformed by the fuel reformer and at least a part of exhaust gas fed from the incinerator is provided which decomposes generated dioxin in waste incineration exhaust gas.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: May 9, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Tsutomu Okusawa, Kazuhito Koyama, Masahiko Yamagishi, Shigeo Hatamiya, Taiko Ajiro, Megumi Sunou, Yukio Ishigaki, Kenji Tokunaga