Burning Pulverized Fuel Patents (Class 110/347)
  • Patent number: 8518133
    Abstract: A gasifier is disclosed. The gasifier may include a housing and a refractory system contained within the housing. The refractory system may comprise an upper manifold, an intermediate portion, and a lower manifold. The refractory system may also include columnar cavities. The columnar cavities may extend vertically through the intermediate portion and place the upper manifold in communication with the lower manifold.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: August 27, 2013
    Inventors: Alan M. Neves, Grover R. Brockbank, Morris K. Ebeling, Jr.
  • Patent number: 8505472
    Abstract: A pulverized coal-fired boiler efficiently supplies air to a central part of a furnace and the neighborhood of a furnace wall, thereby promoting mixture with combustion gas, and reducing both NOx and CO. The main after air ports are structured so as to jet air having a large momentum for enabling arrival at the central part of the furnace, and the sub-after air ports are structured so as to jet air having a small momentum to the neighborhood of the wall face of the furnace, and a sectional center of each of the sub-after air ports is within a range from 1 to 5 times of a caliber of the main after air ports from a sectional center of each of the main after air ports.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 13, 2013
    Assignee: Babcock-Hitachi K.K.
    Inventors: Yuki Kamikawa, Masayuki Taniguchi, Hisayuki Orita, Hironobu Kobayashi, Akira Baba, Toshihiko Mine, Shinichirou Nomura, Noriyuki Ooyatsu, Satoshi Tadakuma, Hidehisa Yoshizako, Hiroaki Kanemoto, Kouji Kuramashi, Akihito Orii, Shinji Tsuda, Hirofumi Okazaki, Takanori Yano, Katsumi Shimohira
  • Patent number: 8500891
    Abstract: A system and process for capturing CO2 100 is disclosed. The process 100 includes reusing heat from a CO2 compression process 120 by providing the heat to a fuel treatment process 130. The heat may used to dry a fossil fuel to improve the efficiency of the fossil fuel combustion.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: August 6, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: John Oliver Butler, Rasesh R. Kotdawala
  • Patent number: 8490556
    Abstract: Provided are fuel feed means 3, an air separation unit 6 air feed means 7, a combustion furnace 11 with a burner 9 for combustion, an exhaust gas line 14 for leading an exhaust gas from the combustion furnace 11 to outside of the combustion furnace 11, exhaust gas treatment means 20a and 20b included in the exhaust gas line 14, and a recirculation line 15 for circulating a portion of the exhaust gas at least exhaust gas treatment means 20a and 20b for recirculation of a portion of the exhaust gas at least dust-removed by the exhaust gas treatment means 20a and 20b to the burner. Further provided are exhaust gas capture means 18 for taking out carbon dioxide gas from a remaining non-recirculating exhaust gas, and carbon dioxide gas feed means 33, 40 and 46 for introducing carbon dioxide gas to equipments 10, 20a and 20b of the oxyfuel combustion boiler facility.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 23, 2013
    Assignees: IHI Corporation, Electric Power Development Co., Ltd.
    Inventors: Toshihiko Yamada, Terutoshi Uchida, Shinji Watanabe, Shuzo Watanabe
  • Patent number: 8470290
    Abstract: This application concerns methods and apparatus for use in industrial waste recovery operations such as recovery of non-consumed chemicals in industrial processes, with recovery of quick lime in a wood pulp process being an example. In some embodiments, methods comprise baking lime sludge in a kiln and controlling a temperature in a calcining zone of the kiln to be above about 2250° F. to vaporize sodium contained in the lime sludge. Interaction of the vaporized sodium with SOx can deter accumulation of one or both of CaCO3 and CaSO4 on one or more inner surfaces of the kiln. In some embodiments, lime sludge can be rinsed to generate a filtrate comprising dissolved NaOH, and the filtrate can charge a scrubber for removing SOx from an exhaust from the kiln. Embodiments of co-fired burners for heating such kilns by burning petroleum coke and natural gas are also disclosed.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: June 25, 2013
    Assignee: Boise Packaging & Newsprint, L.L.C.
    Inventor: Stacy Miller
  • Patent number: 8459986
    Abstract: A burner at which fuel cannot be combusted with air as the only source of oxygen for combustion in a stable flame at the burner when the feed rate of the fuel is too low, when the fuel is fed at too high an air-to-fuel mass ratio, when the fuel contains too high an amount of inert matter, or when the specific energy content of the fuel is too low, is modified by supplying oxidant containing more than 21 vol. % oxygen into the base of a flame at the burner, whereupon such fuels can be combusted at the burner.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: June 11, 2013
    Assignee: Praxair Technology, Inc.
    Inventor: Stefan E. F. Laux
  • Patent number: 8453584
    Abstract: A method for handling a substance from which a combustible gas volatilizes. A method for handling a substance from which a combustible gas volatilizes, in which, when such substance is handled inside an apparatus with a high degree of hermeticity, air is introduced into the apparatus and the substance is handled in a state in which the volatilized combustible gas is diluted to a concentration at which neither explosion nor fire occurs. With this method for handling a substance from which a combustible gas volatilizes, the combustible gas is diluted with air to a concentration at which neither explosion nor fire occurs, without using inactive gases such as nitrogen or carbon dioxide that have to be produced or purchased. Therefore, a substance from which a combustible gas volatilizes can be inexpensively and safely handled in operations such as mixing and storing.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: June 4, 2013
    Assignee: Taiheiyo Cement Corporation
    Inventors: Hirofumi Mori, Eiji Fukuda, Makoto Kagamida, Katsumi Aono
  • Patent number: 8453585
    Abstract: A new and unique boiler and method of transition between air and Oxy-combustion in a coal fired combustion process wherein near pure oxygen may be introduced to the boiler furnace in several locations including directly into the flame through the burner and/or directly into the furnace as nearly pure oxygen, and/or into the recycle flue gas streams to the burners, including both primary and secondary streams.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 4, 2013
    Assignees: Babcock & Wilcox Power Generation Group, Inc., American Air Liquide, Inc.
    Inventors: Bryan B. Stone, Denny K. McDonald, Allan J. Zadiraka, Rajani K. Varagani
  • Publication number: 20130125799
    Abstract: A method and system for reducing the un-burned carbon content in coal combustion products are disclosed. A coal combustion product is separated into a coarse particle fraction and a fine particle fraction, and the coarse particles are comminuted by milling, grinding or the like. Additives may be added of the coarse particles prior to comminution. The comminuted particles are then co-combusted with coal to burn at least a portion of the un-burned carbon contained in the original coal combustion product.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: ASH IMPROVEMENT TECHNOLOGY, INC.
    Inventor: Ash Improvement Technology, Inc.
  • Patent number: 8408148
    Abstract: The invention provides a method of increasing the efficiency of a combustion process by adding bentonite to the flame, fireball or burner region combustion zone of the combustion process. Also provided is a combustion chamber that includes a bentonite feed system and a fuel additive composition of a bentonite such as sodium bentonite having a particle size range that may be employed in the method of the present invention.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 2, 2013
    Assignee: Atlantic Combustion Technologies Inc.
    Inventor: William T. Digdon
  • Patent number: 8393893
    Abstract: In order to provide a rotary-furnace burner in which the quantity fraction of cost-effective particulate secondary fuels to be used as energy carriers can be increased and the configuration of the burner flame can be influenced, even during the operation of the burner, it is proposed, according to the invention, to arrange an expansion chamber open towards the burner mouth and having a widened cross section, as compared with the tube or individual tubes in the burner in front of the issue of the tube or tubes for blowing out the secondary fuels, and to make the axial length and the volume of the expansion chamber variable, during the operation of the burner, by means of the axial displacement of the secondary-fuel tubes, so that the particulate secondary fuel particles blown out at the burner mouth with a considerably reduced velocity do not fly past the burner flame, but, instead, burn out in the flame.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 12, 2013
    Assignee: KHD Humboldt Wedag GmbH
    Inventors: Ernst Schröder, Alexander Knoch
  • Patent number: 8393065
    Abstract: A method for retrofitting a pulverized coal boiler in an air combustion boiler system is disclosed, which has a plurality of burners over a plurality of stages along the vertical direction on a wall surface of a furnace of the pulverized coal boiler and an after-air port for introducing air for two-stage combustion located above the burners to retrofit into a two-stage combustion pulverized coal boiler in an oxyfuel combustion boiler system.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: March 12, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuma Tatsumi, Masayuki Taniguchi, Tsuyoshi Shibata, Yoshiharu Hayashi
  • Publication number: 20130040251
    Abstract: The system comprises a boiler (1), main burner groups (2F, 2E, 2D, 2C) located on different levels or zones through which pulverized solid fuel is injected into the boiler (1) and main mills (3F, 3E, 3D, 3C) for solid fuel, where each of them is connected to one of the main burner groups (2F, 2E, 2D, 2C) to which a flow of solid fuel is directed. As a complement, it incorporates a substitution mill (3B) intended to operate only on the main burner group (2F, 2E, 2D, 2C) whose main associated mill (3F, 3E, 3D, 3C) has stopped, as well as a support mill (3A) which operates constantly and directs an additional flow of solid fuel towards the main burner group or groups (2F, 2E, 2D, 2C) selected, supplementing the flow of solid fuel provided by the main mills (3F, 3E, 3D, 3C).
    Type: Application
    Filed: January 22, 2010
    Publication date: February 14, 2013
    Applicant: INERCO, INGENIERIA, TECNOLOGIA Y CONSULTORIA, S.A.
    Inventors: Francisco Rodriguez Barea, Enrique Tova Holgado, Luis Cañadas Serrano, Miguel Á Delgado Lozano, Miguel A. Portilla De La Concha Cobano, Miguel Morales Rodríguez
  • Publication number: 20130036955
    Abstract: A combustor for low quality fuels has a devolatilization chamber receiving the fuel and separating the fuel into char and gases. Char from the devolatilization chamber exits through a first port connected to a char chamber. The char chamber reduced the char to gases and ash. Gases generated in both the devolatilization chamber and char chamber are sent to gas and particulate combustion chamber, such as a fluidized bed. The various stages are operated at the optimum temperatures for the contituents provided to that stage. The resulting process has reduced emissions.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 14, 2013
    Inventors: Howard E. Purdum, Williams L. Downs, Lawton V. Downs, Edward R. Sechrest, William J. Kadri
  • Publication number: 20130025514
    Abstract: An initial coal is cleaned to reduce ash content by ?20% and yield refined coal that optimizes combustion air flow through a coal burner. This permits conveyance of pulverized refined coal in suspended condition through feeder pipes of the coal burner using reduced air flow compared to the quantity of air required to convey pulverized initial coal in suspended condition through the feeder pipes. This reduces oxygen in the primary combustion zone, lowering conversion of fuel nitrogen into NOx and instead converting it into N2 using the refined coal product. Reduced primary combustion air also reduces core flame temperature, reducing thermal NOx formation using the refined coal product. Increasing secondary and/or tertiary combustion air compensates for reduced primary combustion air and result in overall decrease in NOx formation (e.g., thermal NOx formation is reduced when combustion completed in cooler secondary and/or tertiary combustion zones).
    Type: Application
    Filed: October 1, 2012
    Publication date: January 31, 2013
    Inventors: Rafic Minkara, N. Stan Harding
  • Publication number: 20120312207
    Abstract: In one embodiment, a method for generating heat energy includes injecting a stream having a concentration of at least 50% oxygen (O2 stream) into a primary gas stream through a mixer, the mixer discharging the O2 stream as two or more spaced jets traversing the primary stream, thereby enriching the primary gas stream. The method further includes mixing fuel with the enriched primary gas stream, thereby forming a fuel stream; and combusting the fuel stream, thereby forming a flue gas stream.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: M. Usman GHANI, Florian GAUTIER, Rajani K. VARAGANI, Susie LEVESQUE, Bernard LABEGORRE, Frederic CAMY-PEYRET, Sylvain GRILLON, Pavol PRANDA
  • Publication number: 20120304905
    Abstract: Solid particulate fuels are combusted with a primary oxidant stream of industrially pure oxygen and a secondary oxidant stream of industrially pure oxygen optionally mixed with a portion of recycled flue gas. The fuel is conveyed with a carrier gas of air or recycled flue gas. An oxygen concentration out of the total amount of the fuel stream and the primary and secondary oxidant streams is 40-63% by mass or 47-70% by volume.
    Type: Application
    Filed: June 5, 2011
    Publication date: December 6, 2012
    Inventors: Chendhil PERIASAMY, Yuan XUE, Taekyu KANG, Remi Pierre TSIAVA
  • Patent number: 8316782
    Abstract: The invention relates to an indirect heating system in which a solid fuel circulates in the form of particles. The inventive system comprises a grinding station, a furnace (7), at least one intermediate silo, a separator, at least one cyclone and, optionally, a gas recirculation fan. The invention is characterized in that a dust extractor (10) captures the finest particles which are subsequently introduced into the furnace (7) by means of at least one specific conduit (52) and burnt by at least one specific burner (71). The aforementioned ultra-fine particles are then stored in a specific silo (10), dosed into a feeding device (61), mixed in well defined proportions with hot air and conveyed to the specific burner (71) through the specific conduit (52).
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: November 27, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: François Malaubier, Jean-Michel Tornier
  • Publication number: 20120270162
    Abstract: A combustion control system, including a first set of sensors for generating sample data including data representing a sequence of detected images of different samples of a fuel made up of solid particles; a fuel analysis module for controlling a processor of a computing device to: (i) determine attributes for one or more predetermined physical characteristics of the particles in each said sample based on the sample data, and (ii) generate an index value for each said sample based on said attributes, said index value representing a level of combustibility of the particles in each said sample; and a combustion control module for controlling a processor of a computing device to adjust one or more parameters for controlling a combustion process based on changes to said index value over time.
    Type: Application
    Filed: September 21, 2010
    Publication date: October 25, 2012
    Applicant: KAILASH & STEFAN PTY LTD
    Inventors: Fredrick Stefan Jarl Dahlhielm, Kailash Nath Sriram
  • Publication number: 20120255471
    Abstract: It is an object of the present invention to provide a solar boiler system that can suppress the installation cost for a solar heat collector and significantly improve gross thermal efficiency while minimizing a rise in air temperature resulting from the collected solar heat. The solar boiler system of the present invention includes a boiler for burning fossil fuel; a primary air system for pneumatically transporting pulverized fossil fuel to a burner attached to the boiler; a secondary air system for supplying preheated air for combustion to the boiler; and a secondary air superheater provided at the secondary air system, the secondary air superheater further superheating the preheated air for combustion with solar thermal energy.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 11, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Nobuyoshi MISHIMA, Takashi Sugiura, Toshihiko Sakakura
  • Publication number: 20120251959
    Abstract: A method of feeding at least one of light, fine and moist fuel into a furnace of a circulating fluidized bed boiler. Fuel is fed into the furnace through a fuel feed and the fuel is combusted in a turbulent, circulating fluidized bed. A fuel feed area is isolated from the turbulent circulating bed by arranging the fuel feed along at least one channel arranged in a wall of the furnace. Solids of the circulating bed material are introduced onto a first grid section at the bottom of the fuel feed area. The fuel and the solids are mixed and fluidized above the grid section to form a fuel-solids mixture that flows laterally onto a second grid section and a third grid section where the mixture is fluidized. The fluidized bed material is circulated both inside and outside of the furnace. The bed material is separated from the flue gases and returned to the furnace.
    Type: Application
    Filed: October 29, 2010
    Publication date: October 4, 2012
    Applicant: FOSTER WHEELER ENERGIA OY
    Inventors: Marcin Klajny, Pertti Kinnunen
  • Patent number: 8277543
    Abstract: Disclosed is a gaseous fossil fuel fired, indirectly heated, Brayton closed cycle comprising an alkali metal seeded noble gases that is rendered non-equilibrium, electrically conducting in a magnetohydrodynamic (MHD) electric power generator with zero emissions from the combustion products, including physical separation and sequestration of the carbon dioxide (CO2) what is emitted from the fossil fuel, with said cycle combined with a Rankine steam turbine bottoming cycle to compress the noble gas, while another optional new or existing Rankine steam cycle is placed in parallel and separate from the MHD cycle, and it is fired by the solid char remaining if the MHD cycle is fired with the devolatilized coal, and/or with solid coal culm, and/or unburned carbon in coal power plant waste ash, in order to achieve high efficiency at low capital, low operating, and low fuel costs.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: October 2, 2012
    Inventor: Bert Zauderer
  • Publication number: 20120216730
    Abstract: A method of combining oxygen and fuel in a burner to produce a flame whereby an outer oxidant flow is discharged through an outer oxidant outlet of the burner; a flow of conveyor-gas propelled particulate solid fuel is discharged with a fuel discharge velocity through a fuel outlet of the burner arranged coaxially with respect to the outer oxidant outlet and spaced radially inwardly therefrom; and a first inner oxidant flow is discharged with an inner oxidant discharge velocity, which differs from the fuel discharge velocity, through an inner oxidant end outlet of the burner arranged coaxially with respect to said fuel outlet and spaced radially inwardly therefrom; and whereby a second inner oxidant flow, having a higher oxygen concentration than the conveyor gas is injected into the fuel-conducting passage and mixed with the fuel flow inside said fuel-conducting passage so as to obtain, upstream of the fuel outlet and upstream of the inner oxidant end outlet, an oxygen-enriched conveyor-gas propelled particu
    Type: Application
    Filed: October 29, 2010
    Publication date: August 30, 2012
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Brenice Belasse, Jacques Mulon, Faustine Panier, Xavier Paubel, Remi Tsiava
  • Publication number: 20120210917
    Abstract: Burner for conveyor gas propelled particulate solid fuel, said burner comprising a burner block and an injector assembly, the injector assembly being at least partially surrounded by an injector passage of the burner block, the injector assembly comprising an inner oxygen supply pipe surrounding a fuel injector, which in turn surrounds an oxygen injector, each having a downstream end on the side of the passage outlet, the inner oxygen supply pipe having a lateral surface onto which are mounted a set of lateral primary oxygen nozzles for the injection of lateral jets of primary oxygen into the fuel injector with an injection orientation which follows a same sense of rotation around the longitudinal direction and which is directed towards the downstream end of the fuel injector, said lateral primary oxygen nozzles being positioned at a number of different distances from the downstream end of the fuel injector.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 23, 2012
    Inventors: Brenice Belasse, Jacques Mulon, Faustine Panier, Xavier Paubel, Remi Tsiava
  • Publication number: 20120192773
    Abstract: A burner and method for oxidizing solid fuels wherein the burner has a lance having one or more nozzle feeds and one or more nozzle outlets concentrically surrounded by a primary oxidant passage which is concentrically surrounded by a secondary oxidant passage wherein the primary and secondary oxidant passages communicate at their proximal ends with a gas supply, the lance having a distal and proximal end and the one or more nozzle feeds is in communication with a gas supply.
    Type: Application
    Filed: August 1, 2011
    Publication date: August 2, 2012
    Inventors: Donald P. Satchell, JR., Andrew P. Richardson, Ian Hibbitt
  • Patent number: 8231380
    Abstract: The invention concerns a combustion method for industrial furnace comprising an arrangement of two substantially parallel and symmetrical burner assemblies (G, D). Each burner assembly comprises a fuel injector (10<SUB>G</SUB>, 10<SUB>D</SUB>) and three oxidant injectors (1<SUB>G</SUB>, 2<SUB>G</SUB>, 3<SUB>G</SUB>, 1<SUB>D</SUB>, 2<SUB>D</SUB>, 3<SUB>D</SUB>) arranged at increasing distances from the fuel injector. An oxidant supply system cyclically distributes a specific flow of oxidant among some at least of the second and third injectors of the burner assemblies (2<SUB>G</SUB>, 3<SUB>G</SUB>, 2<SUB>D</SUB>, 3<SUB>D</SUB>). The amount of nitrogen monoxide produced upon combustion is thus reduced, while ensuring a good distribution of the heating power in the furnace.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: July 31, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Rémi Tsiava, Benoit Grand, Patrick Recourt, Bertrand Leroux
  • Patent number: 8230796
    Abstract: A combustor 110 is operative to effect therewith the combustion of fossil fuel 114? in order to thereby both heat to a working fluid 102 and generate a flue gas 104. An air preheater 144 receives the flue gas 104 generated in the combustor 110. A blower 180 causes air 188 to flow to the air preheater 144 when operating in an air fired mode, and causes both O2 and recycled flue gas 188? to flow when operating in the O2 firing mode. The air preheater 144 is operative to transfer heat from the flue gas 150 received thereby to the air 188 that is received when operating in an air fired mode or to both the received O2 and the recycled flue gas 188? that is received when operating in the O2 firing mode in order to thereby effect a preheating of the air 188 or of both the O2 and recycled flue gas, 188? depending upon the specific nature of the mode of operation thereof, and to thereby effect therewith a cooling of the flue gas received thereby.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: July 31, 2012
    Inventors: Herbert E. Andrus, Jr., Gregory N. Liljedahl, John L Marion, Nsakala Ya Nsakala
  • Patent number: 8225524
    Abstract: An air wiping device for drying an elongated product that passes through the air wiping device. The air wiping device includes a housing having an internal elongated tubular passage through which the elongated product extends and including opposite one and other ends with the housing tubular passage having an inlet end and an outlet end for respectively receiving and passing the elongated product; a first set of nozzles mounted at the one end of the housing for communicating a compressed gas stream to the internal elongated tubular passage and second set of nozzles mounted at the other end of the housing for communicating a compressed gas to the internal elongated tubular passage. The first and second sets of nozzles are mounted for directing the respective gas streams obliquely to the internal elongated tubular passage.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: July 24, 2012
    Assignee: Huestis Machine Corporation
    Inventor: Stephen Bettencourt
  • Patent number: 8220400
    Abstract: A method for extracting energy from biomass depleted of at least some carbohydrate, at least some oil, or both by a) introducing the biomass into a vertically elongated combustion chamber having i) at least one suspension burner at the top of the combustion chamber which is capable of projecting a flame down the axis of the combustion chamber, ii) a heat transfer apparatus having at least a portion of a heat collection surface located radially from the flame and below the burner, and iii) an exhaust opening located below the flame and below at least a portion of the heat collection surface; b) combusting the biomass to yield a mixture containing hot flue gas and molten ash above the exhaust opening; c) transferring heat from the hot flue gas to at least a portion of the heat collection surface substantially by radiation prior to any substantial contact of ash to a surface of the combustion chamber, to yield a mixture containing warm flue gas and non-molten ash and having a lower molten ash content than the mi
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: July 17, 2012
    Assignee: European Sugar Holdings S.A.R.L.
    Inventors: Raymond C. Ganga, Greg Imig, Blake McBurney, Robert Jansen, John Kerr, Steven J. Reust
  • Publication number: 20120174837
    Abstract: A combustor assembly in a coal burning power plant includes a combustor housing that defines a combustion zone in which pulverized coal is burned, at least one burner that introduces pulverized coal into the combustion zone, and an overfire air port that injects air into the combustor housing above the combustion zone, the overfire air port being generally not movable with respect to the combustor housing. The combustor assembly further includes a nozzle assembly associated with the overfire air port. The nozzle assembly includes a flow directing structure disposed within the overfire air port, which flow directing structure is tiltable with respect to the overfire air port to effect a change in a flow direction of the air being injected into the combustor housing through the overfire air port.
    Type: Application
    Filed: October 20, 2011
    Publication date: July 12, 2012
    Inventors: JIEFENG SHAN, Sergey Kaushansky
  • Publication number: 20120174838
    Abstract: A burner for a combustion apparatus, a combustion apparatus comprising such burners, and a method of operation of the same are described. The burner comprises: a fuel input conduit for supplying fuel to the burner; a combustion gas input conduit for supplying combustion gas to a first stage combustion site; an overfire gas input conduit for supplying overfire gas to a second stage combustion site; and gas supply means; wherein the gas supply means is adapted to supply gas switchably between a first mode of operation wherein air is supplied in suitable proportion to both the combustion gas input conduit and the overfire gas input conduit; and a second mode of operation wherein an oxygen containing gas other than air is supplied to the combustion gas input conduit and substantially no gas is supplied to the overfire gas input conduit.
    Type: Application
    Filed: July 23, 2010
    Publication date: July 12, 2012
    Applicant: DOOSAN POWER SYSTEMS LIMITED
    Inventors: Stuart D. Cameron, Euan D Cameron
  • Publication number: 20120152158
    Abstract: A solid-fuel-fired burner that suppresses a high-temperature oxygen remaining region formed at the outer circumference of a flame and that can decrease the amount of NOx eventually produced is provided. A solid-fuel-fired burner that is used in a burner section of a solid-fuel-fired boiler for performing low-NOx combustion separately in the burner section and in an additional-air injection section and that injects powdered solid-fuel and air into a furnace includes a fuel burner having internal flame stabilization and a secondary-air injection port that does not perform flame stabilization, in which the air ratio in the fuel burner is set to 0.85 or more.
    Type: Application
    Filed: June 7, 2010
    Publication date: June 21, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Keigo Matsumoto, Koutaro Fujimura, Kazuhiro Domoto, Toshimitsu Ichinose, Naofumi Abe, Jun Kasai
  • Publication number: 20120145055
    Abstract: A coal nozzle for a burner on a pulverized coal fired furnace which includes an elongated tubular nozzle having an inlet for receiving a flowing stream of coal/air mixture and an outlet for discharging the flowing stream into a combustion zone of a furnace for combustion, and an inlet elbow connected to the inlet of the tubular nozzle. The interior outer surfaces of the elbow include a staircase surface configuration for engaging the incoming flowing stream whereby coal ropes in the stream are broken up for thereby improving flow distribution of the stream.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 14, 2012
    Applicant: Power & Industrial Services Corporation
    Inventor: Lawrence G. Shekell
  • Patent number: 8196532
    Abstract: A combustor 110 combust a fluidized bed of fossil fuel 114, 114? to heat a working fluid 102 and generate flue gas 104. An air preheater 144 has first and second gas passageways 144a, 144b for respectively directing the generated flue gas 150 and another gas 250 with captured CO2 generated by combustion outside of the combustor 110. When operated in a non-CO2 capture, the air preheater 144 receives the flue gas 150, but not the other gas 250, and the first gas passageway 144a directs the flue gas 150 so as to preheat the air 188. However, when operated in the CO2 capture mode, the air preheater 144 receives the flue gas 150 and the other gas 250, and the second gas passageway 144b also directs the other gas 250 so as to preheat the air 188?. In either mode, the preheated air 188, 188? is applied by the combustor 110 to fluidize a bed of fossil fuel 114, 114?.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 12, 2012
    Inventors: Herbert E. Andrus, Jr., Gregory N. Liljedahl, John L Marion, Nsakala Ya Nsakala
  • Publication number: 20120122042
    Abstract: The invention relates to a method for improving the dynamic behavior of a coal-fired power plant for primary and/or secondary requirements of the power grid operator with respect to the current output into the grid, wherein the power plant has a nominal output (RC) and is operated by way of firing, wherein upon an increase in the primary and/or secondary requirements of the power grid operator with respect to the current output into the grid the coal dust volume that is supplied is raised with respect to the present actual output, and wherein upon a decrease in the primary and/or secondary requirements of the power grid operator with respect to the current output into the grid the coal dust volume that is supplied is lowered with respect to the present actual output and is stored, and to an assembly for carrying out the method.
    Type: Application
    Filed: March 19, 2010
    Publication date: May 17, 2012
    Inventors: Hellmuth Brueggemann, Olivier Drenik, Michael Heim, Haider Mirza
  • Patent number: 8177547
    Abstract: The invention relates to a method for starting a burner for combusting synthesis gases, wherein said burner comprises first and second fuel passages, the first fuel passage encompasses the second fuel passage in a substantially concentric manner and the gas transferred to the burner is mixed with combusting air and is combusted. According to said invention, in order to start the burner, the second fuel passage is first loaded with a synthesis gas to a predefined burner power at a first starting phase and the first fuel passage is loaded with the synthesis gas at a second starting phase.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: May 15, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Berthold Köstlin, Frank Hannemann, Andreas Heilos, Gerhard Zimmermann
  • Patent number: 8176911
    Abstract: A method to regulate overfire air passing through an overfire air duct and entering a flue gas stream in a combustion system including: directing overfire air into an inlet of the overfire air duct, passing the overfire air through the duct and discharging the overfire air into the flue gas stream in the combustion system; adjusting a flow rate of overfire air entering the inlet using a damper adjacent the inlet, and moving the damper parallel along an axis of the overfire air duct to increase and decrease the overfire air entering the inlet, wherein the damper has an open position at which the damper is extended out of the inlet and a closed position in which the damper is substantially in the inlet and blocking air entering the inlet.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Robert W. Waltz, Quang H. Nguyen
  • Publication number: 20120115094
    Abstract: For a steam generator comprising a combustion chamber fired with a fossil fuel and/or with particulate fuel containing carbon and at least one burner level comprising several burners (1) and/or at least one level comprising nozzles in the form of upper air nozzles and/or side wall nozzles, each having connected feed means (9, 10, 11, 12) and/or feed lines (2, 4, 5, 9a-9d, 10a-10d, 11a-11d, 12a-12d) through which/by means of which gas flows conveying combustion and/or oxidation oxygen can be fed to burners (1) and/or the nozzles (13) and/or the combustion chamber, a solution should be created by means of which undesired oxygen contents in the flue gas can be avoided during oxyfuel operation of the steam generator in the partial-load range.
    Type: Application
    Filed: March 25, 2010
    Publication date: May 10, 2012
    Applicant: HITACHI POWER EUROPE GMBH
    Inventors: Christian Bergins, Jürgen Niesbach, Alfred Gwosdz
  • Publication number: 20120052450
    Abstract: A control system, and method for using the same, for controlling a boiler having a furnace is provided. The system includes at least one camera positioned in visual communication with a combustion chamber in a furnace. The camera is in communication with a controller and is operable to transmit signals indicative of a parameter of a flame within the furnace. Based at least in part on the received signals, the controller generates control adjustments for one or more of the boiler components. The control adjustments are communicated to the boiler components, which in turn are adjusted to optimize the performance of the boiler and reduce pollution.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 1, 2012
    Applicant: ALSTOM Technology Ltd
    Inventors: Xinsheng Lou, Abhinaya Joshi, Carl H. Neuschaefer
  • Patent number: 8117975
    Abstract: A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: February 21, 2012
    Assignee: Evonik Stockhausen, LLC
    Inventors: Gary W. Allen, John T. Joyce, Jr.
  • Patent number: 8117974
    Abstract: An apparatus for extracting energy from fiber introduced as a fuel into a vertically elongated combustion chamber having a suspension burner capable of projecting a flame down the axis of the combustion chamber with a heat collection surface located radially from the flame and below the burner, and an exhaust opening located below the flame and below at least a portion of the heat collection surface, in which the combusted fiber yields a mixture containing hot flue gas and molten ash above the exhaust opening and heat transfers therefrom to the heat collection surface prior to any substantial contact of ash to a surface of the combustion chamber, to yield a mixture containing warm flue gas and non-molten ash, that is thereafter cooled to yield a mixture containing cool flue gas and non-molten ash.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: February 21, 2012
    Assignee: The McBurney Corporation
    Inventors: Raymond C Ganga, Greg Imig, Blake McBurney, Robert Jensen, John Kerr, Steve J Reust
  • Patent number: 8113824
    Abstract: A large diameter mid-zone air separation cone is provided for decreasing NOx during burner operation by expanding the internal recirculation zone (IRZ) at the burner exit. The mid-zone air separation cone has a short cylindrical leading edge that fits in the outer air zone of a burner. The mid-zone air separation cone splits the outer air zone secondary air flow into two equal or unequal streams depending on the position of the air separation cone with respect to the outer air zone, and deflects a portion of the secondary air flow radially outward. Since the radial position of the air separation cone is farther from the burner centerline, the IRZ size is expanded and NOx emissions are minimized.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: February 14, 2012
    Inventors: Hamid Sarv, Albert D. LaRue, William J. Kahle, Alan N. Sayre, Daniel R. Rowley
  • Patent number: 8105401
    Abstract: A method for using a downdraft gasifier comprising a housing and a refractory stack contained within the housing. The refractory stack may comprise various sections. Apertures in the sections may be aligned to form multiple columnar cavities. Each columnar cavity may comprise an individual oxidation zone. The method of use may include the steps of placing a feedstock into an upper portion of the refractory stack, measuring the temperature of each columnar cavity, and adjusting the flow of oxygen to a particular columnar cavity to maintain the temperature of the particular columnar cavity within a particular range.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: January 31, 2012
    Assignee: Refill Energy, Inc.
    Inventors: Alan M. Neves, Grover R. Brockbank, Morris K. Ebeling, Jr.
  • Patent number: 8104412
    Abstract: A deflector device for improving particle distribution within a coal piping system includes a base defining an outer circumference. The base is configured to be mounted inside a pipe such that the base extends partially around the inner circumference of the pipe with the circumferences of the pipe and base being substantially aligned concentrically. A deflector extends radially inward from the base. The deflector is configured to direct a concentrated flow of coal particles toward the center of the pipe.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: January 31, 2012
    Assignee: Riley Power Inc.
    Inventors: Vlad Zarnescu, Craig A. Penterson
  • Patent number: 8100992
    Abstract: A biomass thermochemical gasification apparatus is provided that can manufacture high-quality fuel gas out of solid biomass in an industrial manner. This fuel gas can be used as fuel for a gas engine and a gas turbine for example and also can be used as synthesis gas for methanol synthesis. A high-temperature combustion gas generation apparatus (101) for biomass operates entirely by biomass and the heat source thereof does not depend on fossil fuel. A coarsely-ground powder biomass (205) subjected to gasification and gasification agent (303) are introduced to a primary gasification reaction room (202) and generate gasification reaction by, as reaction heat, radiation heat from a wall face of the primary gasification reaction room (202) heated by combustion gas (109a) generated in the high-temperature combustion gas generation apparatus (101) and are dissolved. Consequently, the biomass (205) is converted to clean and high-quality generated gas.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 24, 2012
    Assignee: Nagasaki Institute of Applied Science
    Inventors: Masayasu Sakai, Toshiyuki Takegawa, Hachiro Kawashima, Nobuaki Murakami
  • Patent number: 8100064
    Abstract: A tangential fired boiler includes a circumferential wall defining a combustion zone, the circumferential wall being generally rectangular when viewed along a generally horizontal cross-section. A fireball is disposed within the combustion zone, the fireball rotating about an imaginary axis when viewed along a generally horizontal cross-section. A corner member is disposed proximate to at least one corner of the combustion zone, with a plurality of fuel inlets disposed along the corner member. The plurality of fuel inlets inject fuel into the combustion zone, and at least some of the plurality of fuel inlets inject fuel in a direction which is angled with respect to a normal of the corner member and upstream relative to a direction of rotation of the fireball.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: January 24, 2012
    Assignee: Diesel & Combustion Technologies, LLC
    Inventors: Lawrence D. Berg, Edmund S. Schindler, Nigel John Garrad, John Joseph Halloran, Robert J. Collette
  • Patent number: 8091491
    Abstract: The present invention is about a process for treating all the ashes produced by a coal dust boiler (1), able to reduce the total unburnt matter content, to increase the combustion efficiency of the boiler (1), and to have the light ashes as the only waste arising from the coal combustion. In particular, said process provides for the extraction of the heavy ashes (4) from the boiler bottom (23), the ashes coming from the hoppers of the economizers (5) and the fraction of light ash richer of unburnt matter coming from the filters (11) used to collect the dust from the flue gas; said ashes are mixed in a silo (15), proportioned and transferred in one or more feeders (17) of the coal mills (18), and reintroduced in the boiler (1) after being mixed with the coal through the burners (2).
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: January 10, 2012
    Assignee: Magaldi Power S.p.A.
    Inventors: Mario Magaldi, Rocco Sorrenti
  • Patent number: 8082860
    Abstract: An orifice plate for improving particle distribution within a coal piping system includes a plate body defining a central orifice therethrough bounded by an inner periphery of the plate body. The plate body is configured and adapted to be affixed between end flanges of adjacent pipes in a coal piping system so as to generally align the central orifice with an internal flow passage through the coal piping system. Flow disruption features are defined in the inner periphery of the plate body. The flow disruption features are configured and adapted to disrupt a flow of air and particles flowing through the central orifice to provide a more uniform distribution of particles downstream of the plate body than upstream.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 27, 2011
    Assignee: Babcock Power Services Inc.
    Inventors: Bonnie Courtemanche, Vlad Zarnescu, Craig A. Penterson
  • Publication number: 20110265697
    Abstract: A circulating fluidized bed combustor arrangement includes (a) a circulating fluidized bed reactor in which (i) a combustion chamber combusts a fuel material in a suspension of solid particles of a circulating fluidized bed, (ii) a first cyclone separator arrangement receives a mixture of gases and solid particles from the combustion chamber for separating a first fraction of the solid particles from the exhaust gases, and (iii) a solid particle return system connected to the first cyclone separator returns separated solid particles to the combustion chamber, (b) a heat transfer section including a water/steam heat exchanger section arranged after the first cyclone separator arrangement in the exhaust gas flow path, (c) a heat recovery device provided in connection with the combustion chamber, the first cyclone separator arrangement and the heat transfer section being arranged for recovering heat resulting from the combustion process in the combustion chamber, (d) a selective catalytic reduction system arrang
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: FOSTER WHEELER NORTH AMERICA CORP.
    Inventors: Kumar Sellakumar, Victor Ciarlante, Horst Hack
  • Patent number: 8015932
    Abstract: A fuel flexible furnace, including a main combustion zone, a reburn zone downstream from the main combustion zone, and a delivery system operably coupled to supplies of biomass and coal and configured to deliver the biomass and the coal as ingredients of first and reburn fuels to the main combustion zone and the reburn zone, with each fuel including flexible quantities of the biomass and/or the coal. The flexible quantities are variable with the furnace in an operating condition.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: September 13, 2011
    Assignee: General Electric Company
    Inventors: Boris Nikolaevich Eiteneer, William Randall Seeker, Roy Payne